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1 Introduction

Main results:
1) black-box reductions; preserving the parameters, constructiveness, and the complexity

assumptions.
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Impagliazzo��������! Dmtpseudodensity

pseudorandom ����! Lcat

2) Common generalization: the constructive LP duality (constructive MinMax) DMT: For
every class F , a distribution ⇢ in U = (U,�), and parameters ✏, � 2 (0, 1), either have a �-dense
(✏,F)-model for ⇢ in U which moreover has low complexity relative to F , or have a small-
complexity function (the average of f ’s in F) that is a universal distinguisher between ⇢ and
any given �-dense measure.
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2 Preliminaries

2.1 Distributions, measures, and tests

A probability space is the pair U = (U,�), where U is a finite set and � : U ! {0, 1} is a
probability distribution over U (so

P
x2U �(x) = 1). Without loss of generality, we assume that

support(�) = U ; otherwise, we define U to be support(�). We write x 2 � to indicate that
x 2 U is randomly sampled according to the probability distribution �.

A function µ : U ! [0, 1] is called a measure over U . Informally, a measure µ can be thought
of as a “fuzzy” set where, for each x 2 U , µ(x) measures the likelihood of x being in the set.1

Subsets A ✓ U correspond to the Boolean measures A : U ! {0, 1} where A(x) = 1 i↵ x 2 A.
We will also think of functions f : U ! [0, 1] as “tests”. For a function f : U ! [0, 1], we

define its complement f̄ = 1 � f . A set F of functions f : U ! [0, 1] is called a class if F is
closed under complementation, i.e., if f 2 F , f̄ 2 F for every f : U ! [0, 1]. A Boolean class
is a class of Boolean functions f : U ! {0, 1}.

Given any two probability distributions ⇢ and � over U , we can express � as a convex
combination �(x) = � · ⇢(x) + (1 � �) · ⌧(x) of ⇢ and some distribution ⌧ , for � 2 [0, 1]. In this
case, to sample from �, we need to sample from ⇢ with probability at least �, implying that ⇢ is
�-dense in �. We have the following definition.

1 More precisely, µ specifies a probability distribution over subsets of U , where a random subset R is picked
by placing each x 2 U into R with probability µ(x), independently.
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Definition 2.1 (density of distribution). For probability distributions ⇢ and � over U , we say
that ⇢ is �-dense in � if, for every x 2 U , �(x) � � · ⇢(x). The maximum value �, 0  �  1,
such that ⇢ is �-dense in � is called the density of ⇢ in �, and is denoted by d�(⇢).

For a subset A ✓ U , its density in (U,�), denoted d�(A), is the probability that a random
sample from � lands inside A, i.e., d�(A) = Ex2�[A(x)]. More generally, we have the following.

Definition 2.2 (density of measure). For µ : U ! [0, 1], the density of the measure µ in the
probability space U = (U,�), denoted by d�(µ), is d�(µ) = E�[µ].

Next we define probability distributions induced by measures.

Definition 2.3 (induced distribution). For a nonzero measure µ over a probability space (U,�),
the induced probability distribution, denoted by µ�, is µ�(x) = µ(x)�(x)/d�(µ) for each x 2 U .

Note that, for a set ; 6= A ✓ U , A� = �|A, where �|A is � conditioned on sampling from A.
We relate the densities of a measure µ and the corresponding induced distribution µ�.

Claim 2.4. For a probability space (U,�) and a nonzero measure µ over U , d�(µ�) � d�(µ),
with equality when µ is a Boolean measure (i.e., a subset of U).2

Proof. For every x 2 U such that µ(x) 6= 0, we have �(x) = µ�(x) ·(d�(µ)/µ(x)) � d�(µ) ·µ�(x),
as µ(x)  1. For any x 2 U with µ(x) = 0, we also get that �(x) � 0 = d�(µ) · µ�(x).

For a nonzero Boolean measure µ, take any x0 2 U such that µ(x0) = 1. We have �(x0) �
d�(µ�) · �(x0)µ(x0)/d�(µ), implying that d�(µ�)  d�(µ).

The following claim relates a measure µ and its scaled version µ0 = c ·µ, for a constant c > 0.

Claim 2.5. For any measures µ over (U,�) and µ0 = c · µ, for a constant c > 0, we have (i)
d�(µ0) = c · d�(µ), and (ii) µ� = µ0

�.

Proof. For (i), d�(µ0) = E�[c · µ] = c · E�[µ] = c · d�(µ). For (ii), for every x 2 U , we have
µ0
�(x) = cµ(x)�(x)/d�(µ0) = µ(x)�(x)/d�(µ) = µ�(x).

2.2 Indistinguishability

For any function f : U ! [0, 1] and a probability distribution ⇢ over the universe U , we define
f [⇢] = E⇢[f ] =

P
x2U f(x)⇢(x). For f : U ! [0, 1] and any measure µ over a probability space

(U,�), we define

f�[µ] = Eµ� [f ] =
X

x2U
f(x)µ(x)�(x)/d�(µ) =

1

d�(µ)
· E�[f · µ].

Note that f [⇢] = d⇢(f) is the density of f (when viewed as a measure) in the probability space
(U, ⇢); similarly, f�[µ] is the density of f in the probability space (U, µ�).

Recall that distributions ⇢1 and ⇢2 over U are ✏-close if, for every subset T ✓ U , we have
|T [⇢1] � T [⇢2]|  ✏. By restricting our tests to a set F of [0, 1]-valued functions, we get the
notion of closeness, or indistinguishability, relative to F .

Definition 2.6 (indistinguishable distributions). For ✏ 2 [0, 1] and a set F of [0, 1]-valued
functions, distributions ⇢1 and ⇢2 over U are (✏,F)-indistinguishable if, for every f 2 F ,
|f [⇢1] � f [⇢2]|  ✏. A distribution ⇢ over U is (✏,F)-pseudorandom over (U,�) if it is (✏,F)-
indistinguishable from �.3

2In general, d�(µ�) can be arbitrarily bigger than d�(µ). For example, let µ(x) = ✏ for every x 2 U , where
0 < ✏ < 1. Then d�(µ) = ✏. But µ� = �, and so d�(µ�) = 1.

3Note that for � uniform over U , we get the standard notion of a pseudorandom distribution.
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Definition 2.7 (approximation). For two functions g : U ! [0, 1] and h : U ! [0, 1] and a set
F of [0, 1]-valued functions, we say that h is an (✏,F)-approximation of g over the probability
space (U,�) if, for all f 2 F , |E�[f(g � h)]|  ✏.

Finally, we define the notion of a model for a set and for a distribution.

Definition 2.8 (model). For a set A ✓ U , a measure µ over the probability space (U,�), and a
parameter ✏ 2 [0, 1], we say that µ is an (✏,F)-model for A if the induced distributions A� and
µ� are (✏,F)-indistinguishable. Similarly, for a distribution ⇢ over U , a measure µ over U is an
(✏,F)-model for ⇢ in the probability space (U,�) if ⇢ and µ� are (✏,F)-indistinguishable.

Remark 2.9. If µ is a model for some distribution ⇢ (or a set A), then, by Claim 2.5, so is
µ0 = c · µ, for any c 2 (0, 1). Thus, there is a model for ⇢ of any density smaller than that of µ.

Using the definition of density for distributions for a restricted collection F of tests, we get
the following definition of pseudo-density for distributions and sets.

Definition 2.10 (pseudo-density). For distribution � and ⇢ over U , for a set F of [0, 1]-valued
functions over U , and parameters ✏, � 2 [0, 1], we say that the distribution ⇢ has (✏,F)-pseudo-
density � inside � if, for all f 2 F , f [�] � � · f [⇢]� ✏.

For a probability space U = (U,�), a set A ✓ U has (✏,F)-pseudo-density � inside U if the
induced distribution A� has (✏,F)-pseudo-density � inside �.

A test f 2 F such that f [�] < � · f [⇢] � ✏ witnesses the fact that ⇢ has density less than �;
such a test is called (✏, �)-distinctive. The negative ✏ term is needed to ensure that poly(1/✏)
random samples are enough to verify that a given f 2 F is indeed (✏, �)-distinctive. Thus, ⇢ has
pseudo-density � inside � if there are no (✏, �)-distinctive tests in F .

2.3 Hardness of Boolean functions

Here we recall the definitions of hardness and hardcore measures for Boolean functions, where
we allow not necessarily Boolean classes F of tests.

Definition 2.11 (hardness and hardcore). For a Boolean function g : U ! {0, 1} over a
probability space U = (U,�), a class F of functions over U , and � 2 [0, 1], we say that g is
(�,F)-hard in U if, for all f 2 F , we have E�[|f � g|] � �.

For a Boolean function g : U ! {0, 1} over a probability space U , a class F , and an
✏ 2 [0, 1], we say that a measure µ over U is an (✏,F)-hardcore for g in U if, for all f 2 F ,
|Eµ� [|f � g|]� 1/2|  ✏.

Remark 2.12. Since a class F is closed under complement, to show that a measure µ is an
(✏,F)-hardcore for a Boolean function g over U = (U,�), it su�ces to argue that Eµ� [|f � g|] 
1/2 + ✏. Indeed, applying this upper bound to the complement f̄ = 1� f , and using the identity
|1 � f � g| = 1 � |f � g| (true for a Boolean g and any f), we also get the lower bound
Eµ� [|f � g|] � 1/2� ✏. Similarly, the lower bound 1/2� ✏ also implies the upper bound 1/2 + ✏.
Thus, it su�ces to prove either an upper or a lower bound on Eµ� [|f � g|].

2.4 Complexity relative to F

Given a class F of functions f : U ! [0, 1], we consider as “low complexity” those functions
h : U ! [0, 1] that “can be easily expressed” in terms of functions f 2 F , using some “simple”
operations. By “easily expressed”, we will mean that h has a small-size circuit whose inputs
are elements f 2 F and real constants, and whose gates are labeled by the allowed operations.
We will allow the following operations: addition, multiplication, threshold, and truncation.
Here, for f 2 F and ✓ 2 [0, 1], the threshold th✓[f ] is defined as th✓[f ](x) = 1 if f(x) � ✓,
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and th✓[f ](x) = 0 otherwise. The truncation trunc[f ] is defined as trunc[f ](x) = f(x) if
0  f(x)  1, trunc[f ](x) = 1 if f(x) > 1, and trunc[f ](x) = 0 if f(x) < 0.4 In addition,
we allow limited exponentiation: for a constant � 2 [0, 1] and a function f 2 F , we allow the
function �f(x).

Remark 2.13. For a Boolean class F , the operation of exponentiation is not necessary as we
can write �f(x) = 1� (1� �) · f(x). We can also avoid exponentiation if we assume that a class
F is closed under thresholds, i.e., if f 2 F implies th✓[f ] 2 F for all ✓ 2 [0, 1].

More formally, we have the following.

Definition 2.14 (complexity relative to F). For a function h : U ! [0, 1], its complexity relative
to F , denoted by compF [h], is the minimum size of a circuit C computing h, where C is using
real constants and functions f 2 F as inputs, and whose gates are labeled by “+”, “⇥”, “th✓”, or
“trunc”. If, in addition, the operation of limited exponentiation is allowed, we use the notation
comp⇤F [h]. For t 2 N, define Ft = {f | compF [f ]  t} and F⇤

t = {f | comp⇤F [f ]  t}.

Of special importance to us will be the following set of low-complexity linear threshold
functions. For a class F and a parameter � 2 N, define the set of Boolean functions

Th�[F ] =

(
th✓

"
1
�0

�0X

i=1

fi

#
| fi 2 F \ {0,1}, ✓ 2 [0, 1],�0  �

)
,

where 0 and 1 are the constant 0 and 1 functions, respectively. That is, Th�[F ] is a collection
of linear threshold functions of particularly simple form, built from at most � non-constant
functions from F . By definition, we have Th�[F ] = Th�[F [ {0,1}]. Also, for a Boolean class
F , Th�[F ] is also a class.

3 Reductions

Here we give the following e�cient black-box reductions: Constructive Strong Hardcore Lemma
) Constructive Dense Model Theorem) Low Complexity Approximation. We consider generic
formulations of the respective theorems where certain parameters are left unspecified, with their
actual values dependent on a particular proof of the theorem.

Generic Constructive Strong Hardcore Lemma: For every ✏, � 2 (0, 1), there
is a � = �(✏, �) so that the following holds for any probability space U = (U,�),
any class F , and any Boolean function g over U . If g is (�,F 0)-hard in U for some
F 0 ✓ F�, then there is a (2�)-dense measure µ 2 F 00 that is (✏,F)-hardcore for g
over U , where F 00 ✓ [|g � F|]⇤�.

An actual Strong Hardcore Lemma would specify the function � as well as the form of sets of
tests F 0 and F 00. For example, in case of a Boolean class F , Holenstein [Hol05] achieves �(✏, �) =
O(✏�2��2), F 0 = Th�[F ], and F 00 consisting of functions of the form trunc[c0 +

Pt
i ci · |g � fi|]

for fi 2 F , ci 2 R, and t  �. Barak et al. [BHK09] achieve �(✏, �) = O(✏�2 log ��1), but for F 00

consisting of more complicated functions in [|g�F|]�; in case F is not Boolean, F 00 ✓ [|g�F|]⇤�.
Next we state the Dense Model Theorem.

Generic Constructive Dense Model Theorem: For every ✏, � 2 (0, 1), there is
a � = �(✏, �) such that the following holds for any probability space U = (U,�), any
class F , and any distribution ⇢ over U . If ⇢ has (✏,F 0)-pseudodensity � inside � for
some F 0 ✓ F�, then there is a �-dense (O(✏/�),F)-model µ 2 F 00 for ⇢ in U , where
F 00 ✓ F⇤

�.

4For a function g : U ! R, we have trunc[g](x) = g(x)(1� th1[g](x)) + th1[g](x), and so the operation trunc

is not strictly necessary, but is included for convenience.
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A non-constructive form of the Dense Model Theorem with the uniform distribution � and
�(✏, �) = O((�/✏)2 log ✏�1) was given by Reingold et al. [RTTV08]. A constructive version was
proved by Zhang [Zha11], achieving �(✏, �) = O((�/✏)2 log ��1) and F 0 = Th�[F ].

Remark 3.1. The parameter O(✏/�) for the quality of the �-dense model in the formulation of
the Dense Model Theorem above is tight, up to a constant factor.

Indeed, consider the case of the uniform distribution �. For any 0 < ✏  � < 1, let S ✓ U be
of density ✏/2, and let T ✓ S be of density ✏/� inside S. Consider the class of tests F = {T, T̄},
where T is the indicator function of the set T , and T̄ is its complement. Observe that T [�] �
0 = �(✏/�)� ✏ = � ·T [S�]� ✏, and T̄ [�] = 1�T [�] � 1� ✏ � � · (1�T [S�])� ✏. Hence, for every
f 2 Th�[F ] (for any �), we have f [�] � � · f [S�]� ✏, and so S has (✏,Th�[F ])-pseudodensity �
inside � (for any value �).

On the other hand, for any measure µ of density �, we have T [µ�] = (1/d�(µ)) · E�[T · µ] 
(1/�) · E�[T ]  ✏/(2�). For S�, we have T [S�] = ✏/�. Hence, |T [S�] � T [µ�]| � ✏/(2�). Thus,
the test T 2 F can ✏/(2�)-distinguish between S� and µ�, for every �-dense measure µ.

The pseudorandom formulation of the Dense Model Theorem is as follows:

Generic Constructive Dense Model Theorem (pseudorandom version):
For every ✏, � 2 (0, 1), there is a � = �(✏, �) such that the following holds for any
probability space U = (U,�), any class F , and any distributions ⇢ and ⌧ over U . If
⇢ is �-dense inside ⌧ , where ⌧ is (✏,F 0)-pseudorandom in U , then there is a �-dense
(O(✏/�),F)-model µ 2 F 00 for ⇢ in U , where F 00 ✓ F⇤

�.

Trevisan et al. [TTV09] achieve �(✏, �) = O(✏�2) and F 0 = F�. Zhang [Zha11] gets � =
O((�/✏)2 log ��1) and F 0 = Th�[F ].

Remark 3.2. As before, the relation between density and model parameters is tight for the
pseudorandom formulation of the Dense Model Theorem as well. We can modify our earlier
construction to get a (O(✏),Th�[F ])-pseudorandom R, with S �-dense in R, and the rest of the
argument is identical.

Let �, T ✓ S ✓ U , and F be as in Remark 3.1. Define R = S [ V where V ⇢ S̄ is such
that S has density � inside R. Observe that T [�]  ✏/2. On the other hand, T [R�] = � ·T [S�] =
� ·(✏/�) = ✏. Hence, |T [R�]�T [�]|  ✏. It follows that R is (✏,Th�[F ])-pseudorandom (for every
�), and S is �-dense inside R. But, as we argued in Remark 3.1, the test T will ✏/(2�)-distinguish
between S� and µ�, for every �-dense measure µ.

Remark 3.3. It is easy to see that the pseudodensity formulation of the Dense Model The-
orem implies the pseudorandom formulation. If a distribution ⇢ is �-dense inside a (✏,F 0)-
pseudorandom distribution ⌧ , then ⇢ also has (✏,F 0)-pseudodensity at least �. Indeed, by as-
sumption, ⌧(x) � � · ⇢(x) for all x 2 U . Hence, for every f , we have f [⌧ ] � � · f [⇢]. By the
definition of pseudorandomness, we have for every f 2 F 0 that |f [⌧ ]� f [�]|  ✏. It follows that,
for every f 2 F 0, f [�] � f [⌧ ]� ✏ � � · f [⇢]� ✏, as required.

Finally, we state the Low Complexity Approximation theorem.

Generic Low Complexity Approximation Theorem: For every ✏ > 0, there
exists a � = �(✏) such that the following holds for any probability space U = (U,�)
and any class F over U . Every function g : U ! [0, 1] has an (✏,F)-approximation
h in U such that E�[h] = E�[g].

Trevisan et al. [TTV09] get � = O(✏�2 log ✏�1) in the general case (and, in the case of a
Boolean F , � = O(✏�2)).
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3.1 Strong Hardcore Lemma implies Dense Model Theorem

Assuming the generic Constructive Strong Hardcore Lemma, parametrized by a function �(✏, �)
and test sets F 0 and F 00 over U , we derive the Dense Model Theorem which inherits the
type of tests of F 0 and F 00 from the Hardcore Lemma, and whose complexity parameter �0

is �(O(✏), O(�)). For concreteness, we prove the Dense Model Theorem assuming the Hardcore
Lemma with �(✏, �) = O(✏�2 log ��1), F 0 = Th�[F ] and F 00 = [|g � F|]⇤� (i.e.,, assuming Barak
et al.’s formulation of the Hardcore Lemma [BHK09]). However, we stress that our reduction is
“black-box”, and could use any other version of the Strong Hardcore Lemma.

Theorem 3.4. Given ✏, � 2 (0, 1) such that ✏  �/3, there exists a � = O(✏�2 log ��1) such
that the following holds. Let U = (U,�) be any finite probability space, and let F be any class
of functions over U . If a distribution ⇢ over U has (✏,Th�[F ])-pseudodensity � in �, then there
exists a (12 · ✏/�,F)-model µ 2 F⇤

� for ⇢ of density � � 3✏.5

Proof. Set �̄ := �/(1 + �) (implying � = �̄/(1 � �̄)) and ✏̄ := ✏/6. Define Û := {(0, x) | x 2
U} [ {(1, x) | x 2 Support[⇢]}, along with the following distribution �̂ over Û : for (b, x) 2 Û ,
where b 2 {0, 1} and x 2 U , define

�̂(b, x) =

(
(1� �̄) · �(x) if b = 0

�̄ · ⇢(x) if b = 1.

Since Th�[F ] = Th�[F [ {0,1}], we can assume without loss of generality that 0,1 2 F .
Associate with each f 2 F a function f̂ : Û ! {0, 1} such that, for any (b, x) 2 Û , f̂(b, x) :=
f(x). Define F̂ = {f̂ | f 2 F}. Clearly, F̂ is a class of Boolean functions over Û .

Consider g : Û ! {0, 1} where g(b, x) = b for every (b, x) 2 Û . Our tests f̂ 2 F̂ , on input
(b, x), ignore b and use x only. Such tests have di�culty in computing g, as we show next.

Claim 3.5. For �̂ := �̄ � ✏+ ✏�̄, the function g is (�̂,Th�[F̂ ])-hard in (Û , �̂).

Proof. Suppose there is �̂ 2 Th�[F̂ ], corresponding to � 2 Th�[F ], such that E�̂[|g��̂|] < �̂. By
considering separately inputs {1}⇥U and {0}⇥U , we have E�̂[|g��̂|] = �̄·E⇢[1��]+(1��̄)·E�[�],
and so �̄ · (1��[⇢])+(1� �̄) ·�[�] < �̄� ✏(1� �̄). Dividing both sides of this inequality by (1� �̄)
and using � = �̄/(1� �̄), we get �[�] < � · �[⇢]� ✏, contradicting the pseudodensity � of ⇢.

By the Strong Hardcore Lemma, for � = O(✏̄�2 log(�̂�1)) = O(✏�2 log ��1), there exists an
(✏̄, F̂)-hardcore measure ⌘ 2 [|g�F̂ |]⇤� of density at least 2�̂ over (Û , �̂). Define ⌘1(x) := ⌘(1, x) 2
F⇤
� and ⌘0(x) := ⌘(0, x) 2 F⇤

�. We get

d�̂(⌘) = �̄ · d⇢(⌘1) + (1� �̄) · d�(⌘0) � 2(�̄ � ✏+ ✏�̄). (1)

We will argue that ⌘0 is a dense model for ⇢. First we lower-bound d�(⌘0) and d⇢(⌘1).

Claim 3.6. d�(⌘0) � � � (7/3)✏, and d⇢(⌘1) � 1� (7/3)✏/�.

Proof. Since 0,1 2 F̂ , by the definition of hardcore we get that both P⌘�̂ [g = 1] and P⌘�̂ [g =
0] are in the interval [12 � ✏̄, 12 + ✏̄], and so are within 2✏̄ of each other. We have P⌘�̂ [g =
1] =

P
x2U ⌘�̂(1, x) = (1/d�̂(⌘)) ·

P
x2U ⌘1(x)�̂(1, x) = (1/d�̂(⌘)) · �̄ · d⇢(⌘1), and similarly,

P⌘�̂ [g = 0] =
P

x2U ⌘�̂(0, x) = (1/d�̂(⌘)) ·
P

x2U ⌘0(x)�̂(0, x) = (1/d�̂(⌘)) · (1 � �̄) · d�(⌘0).
It follows that |�̄ · d⇢(⌘1) � (1 � �̄) · d�(⌘0)|  2✏̄ · d�̂(⌘)  2✏̄. Together with Eq. (1), this

implies d�(⌘0) � (�̂ � ✏̄)/(1 � �̄) = (�̄ � ✏ + ✏�̄ � ✏̄) · (1 + �) � � � 2(✏ + ✏̄) = � � 7✏/3, and
d⇢(⌘1) � (�̂ � ✏̄)/�̄ = (�̂ � ✏̄)(1 + �)/� � (� � (7/3)✏)/� = 1� (7/3)✏/�.

5The 3✏ slack in the density can be moved into the error term by averaging the measure µ with the constant
1 measure; we skip the details.
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Next we show that ⌘0 is a model for ⇢ in (U,�). To this end, we first argue that (⌘0)� is
indistinguishable from (⌘1)⇢, and that (⌘1)⇢ is indistinguishable from ⇢ by tests in F ; applying
the triangle inequality will then conclude the proof of the theorem.

Claim 3.7. The distributions (⌘0)� and (⌘1)⇢ are (✏,F)-indistinguishable.

Proof. Let f 2 F be arbitrary. For the corresponding test f̂ 2 F̂ , we get by the definition of
hardcore that E⌘�̂ [|f̂ � g|] 2 [12 � ✏̄, 12 + ✏̄]. Conditioning on g = 0 and g = 1, we get

E⌘�̂ [|f̂ � g|] = E⌘�̂ [f | g = 0] · P⌘�̂ [g = 0] + E⌘�̂ [1� f | g = 1] · P⌘�̂ [g = 1]. (2)

We have

E⌘�̂ [f | g = 0] =

P
x2U f(x)⌘0(x)�(x)(1� �̄)
P

x2U ⌘0(x)�(x)(1� �̄)
= E(⌘0)� [f ] = f [(⌘0)�], (3)

and, similarly,

E⌘�̂ [1� f | g = 1] =

P
x2U (1� f(x))⌘1(x)⇢(x)�̄P

x2U ⌘1(x)⇢(x)�̄
= E(⌘1)⇢ [1� f ] = 1� f [(⌘1)⇢]. (4)

Also, since 0,1 2 F̂ , we get by the definition of hardcore that both P⌘�̂ [g = 0] and P⌘�̂ [g = 1]
are in the interval [12 � ✏̄, 12 + ✏̄]. Combining this with Eqs. (2)–(4) yields

1� ✏  1� 2✏̄

1 + 2✏̄
 1� f [(⌘1)�] + f [(⌘0)⇢] 

1 + 2✏̄

1� 2✏̄
 1 + ✏,

where we used that ✏̄ = ✏/6  1/6. We conclude that |f [(⌘0)⇢]� f [(⌘1)�]|  ✏, as required.

Claim 3.8. The distributions (⌘1)⇢ and ⇢ are (11 · ✏/�,F)-indistinguishable.

Proof. Let f 2 F be arbitrary. We have that f [(⌘1)⇢]� f [⇢] equals

E⇢[f · ⌘1]
d⇢(⌘1)

� E⇢[f ] =
1

d⇢(⌘1)
· E⇢[f · (⌘1 � d⇢(⌘1))] 

1

d⇢(⌘1)
· E⇢[1� d⇢(⌘1)] =

1

d⇢(⌘1)
� 1,

where for the inequality we first used f(x) � 0 for all x 2 U to get f(x) · (⌘1(x) � d⇢(⌘1)) 
f(x) · (1� d⇢(⌘1)), and then used 1� d⇢(⌘1) � 0 to get f(x) · (1� d⇢(⌘1))  1 · (1� d⇢(⌘1)). By
Claim 3.6, d⇢(⌘1) � 1� (7/3)✏/�, and so, 1/d⇢(⌘1) � 1  (✏/�)/(3/7� ✏/�)  (21/2)✏/�, where
we used our assumption that ✏  �/3 to get the lower bound 3/7� ✏/� � 3/7� 1/3 = 2/21.

Thus, f [(⌘1)⇢]� f [⇢]  (10.5)✏/�, for every f 2 F . Since F is closed under complement, we
also get for every f 2 F that 1� f [(⌘1)⇢]� (1� f [⇢]) = f [⇢]� f [(⌘1)⇢]  (10.5)✏/�.

Finally, we argue that ⌘0 is a model for ⇢ in �. Let f 2 F be arbitrary. By the triangle
inequality and Claims 3.7 and 3.8, we get |f [⇢]�f [(⌘0)�]|  |f [⇢]�f [(⌘1)⇢]|+|f [(⌘1)⇢]�f [(⌘0)�]| 
(10.5)✏/�+✏  12✏/�. Hence, ⌘0 is a (12·✏/�,F)-model for ⇢ in (U,�) of density at least ��3✏.

3.2 Dense Model Theorem implies Low-Complexity Approximation Theorem

For concreteness, we assume Zhang’s formulation of the pseudorandom version of the Dense
Model Theorem with �(✏, �) = O(✏�2 log ��1) and F 0 = Th�[F ] and F 00 = F⇤

�. Using this DMT,
we derive the following Low-Complexity Approximation Theorem.

Theorem 3.9. For any ✏ > 0 there is a �(✏) = O(✏�2) such that the following holds. For
any probability space U = (U,�) and any class F on U , every function g : U ! [0, 1] has an
(✏,F)-approximation h 2 F⇤

� in U such that E�[h] = E�[g].
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Proof. Let � = d�(g). We may assume, without loss of generality, that � � 1/2; otherwise, we
work with ḡ. By Claim 2.4, the induced distribution g� has density at least ↵ inside �, where
� is obviously (✏0,F 0)-pseudorandom in U for any ✏0 > 0 and any set F 0 of tests. Set ✏0 = ✏/c
for some large constant c. By the Dense Model Theorem, we get a �-dense measure µ that is an
(✏,F)-model for g�. The measure µ is in F⇤

O(✏�2) since � � 1/2.

If d�(µ) > �, we consider the scaled-down version c0 ·µ for some c0 < 1 so that d�(c0 ·µ) = �;
recall that such scaling preserves the property of being a model. Let h be the resulting (possibly
scaled) measure. Note that E�[h] = E�[g] by construction.

By the definition of a model, we get, for every f 2 F , |f [h�]� f [g�]|  ✏, which is equivalent
to ����

E�[f · h]
d�(h)

� E�[f · g]
d�(g)

����  ✏.

But since d�(h) = d�(g) = �, we conclude that |E�[f · (h� g)]|  ✏�  ✏, as required.

Remark 3.10. It is possible to strengthen the conclusion on the complexity of h so that h 2 F�

(i.e., drop the need for limited exponentiation operations). By averaging, one can show that if
a test f witnesses that h is not an ✏-approximation of g, then there is a threshold ✓ 2 [0, 1]
such that the Boolean test th✓[f ] witnesses that too. Consequently, it su�ces to get a model with
respect to the set F th = {th✓[f ], 1 � th✓[f ] | f 2 F , ✓ 2 [0, 1]} of Boolean tests. Since, in the
proof of Theorem 3.9, we can assume pseudorandomness of � with respect to an arbitrary set F 0

of tests, we can apply the Dense Model Theorem with F th as our class F . As a result, we end
up working with the Boolean class F , and so limited exponentiation is not needed.

4 The MinMax formulation of the Dense Model Theorem

Here we show that the Strong Hardcore Lemma, Dense Model Theorem (both pseudodense
and pseuodrandom versions), and Low-Complexity Approximation Theorem all follow from the
following LP Duality, or MinMax, formulation of the Dense Model Theorem:

Constructive MinMax version of Dense Model Theorem: For every ✏, � 2
(0, 1), there is a � = �(✏, �) so that the following holds for any probability space
U = (U,�), any class F , and any distribution ⇢ over U :

• either ⇢ has a �-dense (✏,F)-model µ 2 F 00 ✓ F⇤
� in U ,

• or there is a function F , the average of fewer than � functions f from F , and
a constant c > 0 such that F is an ✏/c-distinguisher between ⇢ and any given
�-dense measure: for any �-dense measure �, F [��]� F [⇢] > ✏/c.

4.1 Deriving the Dense Model Theorem

Reingold et al. [RTTV08] showed how the MinMax version of DMT implies the pseudodense
formulation of DMT: assuming the existence of the universal distinguisher F , one shows that
⇢ does not have (⌦(✏�),Th�[F ])-pseudodensity �. For completeness, we present their argument
below.

Suppose F is such that F [��] > F [⇢]+✏/c, for some constant c > 0. Then F̄ [⇢] > F̄ [��]+✏/c.
Order elements of U such that F̄ (xi) � F̄ (xi+1). Let n be the largest integer such that d�({xi :
i 2 [n]}) < �, define measure � by �(xi) = 0 for i � n+ 2, �(xi) = 1 for i 2 [n] and �(xn+1) = c
where c 2 (0, 1] is such that d�(�) = �. By averaging, there exists  2 [0, 1] such that for
� = th[F̄ ] 2 Th�[F ],

�[⇢] > �[��] + ✏/c. (5)

Since 1 � E⇢[�] > E�� [�] + ✏/c, we get 1 > E�� [�]. Since � is Boolean, there must be an
x⇤ 2 support[�] such that �(x⇤) = 0, and, in particular, �(xn+1) = 0 (since F̄ (xn+1) =
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minx2support[�][F̄ (x)]). So, for every x 2 support[�̄] ⇢ {xi : i � n + 1}, �(x) = 0, implying
E�[� · �̄] = 0. Using the identity d�(�) ·E�� [�] = E�[� ·�], we get E�[�] = E�[� ·�]+E�[� · �̄] =
� · E�� [�]. By Eq. (5), we conclude that �[�] < � · �[⇢]� ✏�/c.

A very similar argument also shows that the pseudorandom version of DMT is implied
by the same constructive MinMax formulation. We show that the existence of the universal
distinguisher F implies that any distribution ⌧ in which ⇢ is �-dense cannot be (⌦(✏�),Th�[F ])-
pseudorandom. Indeed, as in the argument above, we get � such that � ·�[⇢]��[�] > ✏�/c. By
the �-density of ⇢ inside ⌧ , we get �[⌧ ] � � · �[⇢], and hence, �[⌧ ]� �[�] > ✏�/c.

4.2 Deriving the Low-Complexity Approximation Theorem

Let � = d�(g) and assume that � � 1
2 (otherwise we can work with ḡ). Set ⇢ := g�. Recall that

⇢ has density at least �.
By the constructive MinMax version of DMT, either we have a �-dense model µ 2 F⇤

� for ⇢,
or we have a universal distinguisher F . In the former case, µ is an approximation to g (by the
same argument as in the proof of Theorem 3.9). The latter case is impossible. Indeed, suppose
F : U ! [0, 1] is such that, for some constant c > 0, F [µ�] � F [⇢] > ✏/c for every measure µ
over U of density d�(µ) = �. For µ = g, this yields 0 > ✏/c, a contradiction.

4.3 Deriving the Strong Hardcore Lemma

Using the constructive MinMax version of DMT, we derive the Strong Hardcore Lemma. More
precisely, we first show that every hardcore measure, however small, has the optimal pseudoden-
sity, and hence, has the model of the optimal density, which is the required hardcore measure.
Then we give a simple construction of hardcore measure whose support consists of just two
elements. Together, these two results imply the Strong Hardcore Lemma.

4.3.1 From small to large hardcore measure

Suppose that µ0 is a (✏/(2c),F)-hardcore measure for a Boolean function g : U ! {0, 1}, where
F is an arbitrary class of tests over the probability space U = (U,�), and c > 0 is a large enough
constant. Define the new class of tests F̂ := {|g � f | | f 2 F}. Define ⇢ := (µ0)�.

By the constructive MinMax version of DMT applied to ⇢, F̂ , and 2�, we have that either ⇢
has a 2�-dense (✏, F̂)-model µ⇤ 2 F̂⇤

�, or there is a universal distinguisher F between ⇢ and any
2�-dense measure �.

In the former case, it is easy to see that µ⇤ must be a hardcore measure. Indeed, by the
definition of a model, we have that, for all f 2 F , |E(µ⇤)� [|g � f |]� E(µ0)� [|g � f |]|  ✏. By the

definition of hardcore, we have that |E(µ0)� [|g � f |]� 1
2 |  ✏/(2c). Hence, |E(µ⇤)� [|g � f |]� 1

2 | 
(1 + 1/(2c))✏, implying that µ⇤ is ((1 + 1/(2c))✏,F)-hardcore measure for g in U .

It remains to argue that the latter case is impossible. We show that the existence of F implies
that g is not �-hard. Indeed, suppose we have a function F = 1

T

PT
t=1(|g � ft|), with ft 2 F for

all 1  t  T < �, such that F [µ�]�F [(µ0)�] > ✏/c for every measure µ over U with d�(µ) = 2�.
Since µ0 is an ✏/(2c)-hardcore for g, we get that |g�ft|[(µ0)�] 2 [12 � ✏/(2c), 12 + ✏/(2c)] for every
1  t  T , and hence, F [µ�] >

1
2 + ✏/(2c). Conditioning on g = 0 and g = 1, we get

F =
1

T

TX

t=1

|g � ft| =

�����g �
1

T

TX

t=1

ft

����� ,

and hence, Eµ� [|g � �|] > 1
2 , where � := 1

T

PT
t=1 ft. The contradiction is now achieved by the

following claim, due to Holenstein [Hol05]; for completeness, we give its proof below.
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Claim 4.1 ([Hol05]). Suppose � : U ! [0, 1] is such that, for all measures µ over U with
d�(µ) = 2�, Eµ� [|g � �|] > 1

2 . Then there is a ✓ 2 [0, 1] such that E�[|g � th✓[�̄]|] < �, where
�̄ = 1� � is the complement of �.

Note that th✓[�̄] 2 ThT [F ]. Since g is assumed (�,Th�[F ])-hard in U , we get a contradiction.

Proof of Claim 4.1. Define ↵c(x) := 2|g��|� 1 and ↵1(x) := 2�̄(x)� 1. Order elements ↵c(x)
from smallest to largest, inducing the ordering on the elements x 2 U : x1, x2, x3, . . . , x|U |. Define
S = {x1, . . . , xn} for the biggest 1  n  |U | such that d�(S) < 2�. Define the measure µ over
U as follows: µ(xi) = 1 for 1  i  n, µ(xj) = 0 for j > n+1, and µ(xn+1) = c for 0 < c  1 so
that d�(µ) = 2�. Note that Support[µ�] = {x1, . . . , xn+1}.

We can represent � as a convex combination of the induced distributions µ� and (µ̄)�, where
µ̄ = 1� µ is the complement of µ. More precisely, we have, for every x 2 U ,

�(x) = d�(µ) · µ�(x) + (1� d�(µ)) · (µ̄)�(x). (6)

It is easy to see that the support of (µ̄)� is either {xn+2, . . . , x|U |} (if µ(xn+1) = 1), or
{xn+1, xn+2, . . . , x|U |} (if µ(xn+1) < 1).

Define  := maxx2Support[µ� ]{↵c(x)} = ↵c(xn+1). Note Eµ� [↵c(x)] > 0 as, by assumption,

Eµ� [|g � �|] > 1
2 . This also means that  > 0.

Consider the probabilistic Boolean function  (with internal randomness r) which, on input

x 2 U , outputs 1 with probability trunc[12 + ↵1(x)
2 ]. It is not hard to see that, on each input

x 2 U , we have Pr[ (x) = g(x)] = trunc[12 + ↵c(x)
2 ].

Since ↵c(xi) �  for all i � n + 1, we get Pr[ (xi) = g(xi)] = 1 for all i > n. Hence, in
particular, E(µ̄)� [Pr[ (x) = g(x)]] = 1. Next, for 1  i  n + 1, we have ↵c(xi)  , and so
1
2 + ↵c(xi)

2  1. Therefore, Eµ� [Pr[ (x) = g(x)]] is at least

Eµ�


1

2
+

↵c(x)

2

�
=

1

2
+

Eµ� [↵c(x)]

2
>

1

2
.

Using Eq. (6), we get E�[Pr[ (x) = g(x)]] = 2�·Eµ� [Pr[ (x) = g(x)]]+(1�2�)·E(µ̄)� [Pr[ (x) =
g(x)]] > 2�/2+(1�2�) = 1��. By averaging, we can fix the internal randomness of  , preserving
this inequality. The resulting deterministic algorithm has the form: On input x 2 U , compute
1
2 +

2�̄(x)�1
2 , and output 1 i↵ the result is at least ↵, for some threshold ↵ 2 [0, 1] (the same for

all inputs x). This can be equivalently written as th✓[�̄] for ✓ = 1
2 + (↵ � 1

2), where ✓ 2 [0, 1]
as 0 <   1 and 0  ↵  1.

Thus, we get that any hardcore measure has a model of optimal density. In order to use this
implication, we need to argue the existence of some hardcore measure µ0. Note that µ0 can be
of any small density, which makes it easier to argue its existence. Below we show that there is
hardcore measure µ0 on a two-element set.

4.3.2 Two-element hardcore measure

Given a Boolean function g that is (�,Th�[F ])-hard on U with respect to a distribution �, our
goal is to construct a 2�-dense (✏,F)-hardcore measure for g over U = (U,�). To this end, we
extend U with two new elements, extend g and F to the new universe, extend the distribution �
to the new universe, and argue that the set of two new elements is a hardcore for the extension
of g and that the extension of g is still �-hard. We then apply our argument from the previous
subsection, to get a “large” hardcore measure for the extension of g. Finally, we argue that
the restriction of this hardcore measure to the original universe U is hardcore for the original
function g of almost optimal density 2�, and can be easily made to be of density 2�.

In more detail, we extend U with two new elements x1 and x2. Let X = {x1, x2}, and let
U⇤ = U [ X. Let x0 2 U be some fixed element. We define the extension g⇤ of g as follows:
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for x 2 U , set g⇤(x) = g(x), and define g⇤(x1) = 1 � g⇤(x2) = g(x0). Extend each f 2 F to
U⇤ by defining f⇤(x) = f(x) for x 2 U , and defining f⇤(x1) = f⇤(x2) = f(x0). Let F⇤ be the
corresponding class of extended tests. Note that our definition of F⇤ ensures that F⇤ is indeed
closed under complement, and so is still a class. Also note that for every h 2 Th�[F⇤], we have
h(x1) = h(x2) = h(x0), while g(x1) 6= g(x2). So, each such h agrees with g⇤ on exactly one of
the two elements in X.

Define a distribution �⇤ on U⇤ as � on U with probability (1 � ✏�) and as the uniform
distribution on X with probability ✏�. Let U⇤ = (U⇤,�⇤). Define µ0(x1) = µ0(x2) = 1, and
µ0(x) = 0 for all x 2 U .

Claim 4.2. The Boolean function g⇤ is (�+ ✏�(12 � �),Th�[F⇤])-hard over U⇤, and the measure
µ0 is (0,F⇤)-hardcore for g⇤ over U⇤.

Proof. First we argue hardness of g⇤. Since for all h 2 Th�[F⇤], |g⇤(x1)�h(x1)| = 1� |g⇤(x2)�
h(x2)|, we get EX [|g⇤ � h|] = 1

2 (for the uniform distribution over X). It follows that E�⇤ [|g⇤ �
h|] = (1� ✏�) · E�[|g � h|] + ✏� · EX [|g⇤ � h|] � (1� ✏�)� + ✏�/2.

Next, to argue that µ0 is a (0,F⇤)-hardcore, note that (µ0)�⇤ is the uniform distribution over
X, and that, for every f⇤ 2 F⇤, EX [|g⇤ � f⇤|] = 1

2 · (|g(x0) � f(x0)| + |1 � g(x0) � f(x0)|) =
1
2 · (|g(x0)� f(x0)|+1� |g(x0)� f(x0)|) = 1

2 , where we used the identity |1� g� f | = 1� |g� f |
(true for Boolean g and any bounded f).

Let �0 = �+ ✏�(12 � �). By remark 2.12, we may assume that � < 1/2� ✏ (since otherwise we
get that the constant 1 measure is already an (✏,F)-hardcore for g). Thus, we have that �0 > �.

By the previous subsection, we get a 2�0-dense (✏,F⇤)-hardcore measure µ⇤ for g⇤ over U⇤.
Define the measure µ over U as the restriction of µ⇤ to U , i..e, for all x 2 U , set µ(x) = µ⇤(x).
We argue next that µ is a large hardcore measure for g over U .

Claim 4.3. µ is ((9/8)✏,F)-hardcore for g over U , and d�(µ) � (2�0 � ✏�)/(1� ✏�).

Proof. We have 2�0  d�⇤(µ⇤) = E�⇤ [µ⇤] = (1� ✏�) · E�[µ] + ✏� · EX [µ⇤]  (1� ✏�) · d�(µ) + ✏�,
which yields the required density lower bound.

Next, for every f⇤ 2 F⇤, we have 1
2 � ✏  E(µ⇤)�⇤ [|g⇤ � f |] = 1

d�⇤ (µ⇤)
· E�⇤ [|g⇤ � f⇤| · µ⇤]. The

latter is at most

1

2�0
· ((1� ✏�) · E�[|g � f | · µ] + ✏� · EX [|g⇤ � f⇤| · µ⇤]) 

E�[|g � f | · µ]
d�(µ)

· d�(µ)
2�0

+
✏�

4�0
.

We may assume that d�(µ)  2�0, since we can always scale µ down. Thus, we can upperbound
the right-hand side of the last equation by Eµ� [|g� f |] + ✏�/(4�0). Using the definition of �0, we
can upperbound the last expression by Eµ� [|g�f |]+✏/8. It follows that 1

2�✏  Eµ� [|g�f |]+✏/8,
implying by Remark 2.12 that µ is a ((9/8)✏,F)-hardcore for g over U .

Finally, if d�(µ) < 2�0, we modify µ as follows: Define the measure µ0 = (1� ✏�)µ+ ✏� (it is
easy to see that 0  µ0(x)  1 for all x 2 U). We have the following.

Claim 4.4. The measure µ0 is 2�-dense ((13/8)✏,F)-hardcore for g over U .

Proof. It is easy to see that d�(µ0) = (1� ✏�) · d�(µ) + ✏� � 2�0 > 2�. It is also easy to see that
d�(µ0) � d�(µ).

To argue that µ0 is a hardcore, we upperbound E(µ0)� [|g � f |] = 1
d�(µ0) · E�[|g � f | · µ0] by

(1� ✏�)E�[|g � f | · µ]
d�(µ0)

+
✏�E�[|g � f |]

d�(µ0)
 E�[|g � f | · µ]

d�(µ)
+

✏�

2�
= Eµ� [|g � f |] + ✏/2.

Since µ is a ((9/8)✏,F)-hardcore, we conclude (using Remark 2.12) that µ0 is ((13/8)✏,F)-
hardcore for g over U , as required.
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5 On-Line Learning Algorithm

Here we derive an algorithmic version of the MinMax formulation of the Dense Model Theorem,
using the online-learning framework of [FS99], adapted to the setting of dense models by [BHK09,
Zha11]. The learning algorithm uses Bregman projections, which we discuss next.

5.1 Bregman projections

Given a measure µ over (U,�) of density greater than �, we can always get a measure µ0 of
density exactly � by setting µ0 = � · µ, for some constant 0 < � < 1. Such scaling doesn’t
change the induced distribution µ�, and so µ0 stays a model if µ was a model. What if we have
a measure µ of density less than �, and we want to get from µ a “closely related” measure of
density �? A natural idea would be to define µ00 = c ·µ for some constant c > 1. The problem is
that c · µ may not be [0, 1]-bounded. So it is natural to define µ00 = trunc[c · µ], for the smallest
constant c � 1 such that µ00 has density � if such a c exists. It turns out that the measure µ00

defined this way is exactly the result of “projecting” the measure µ onto the set of measures of
density at least �, using the notion of Bregman projection. For the notion of “distance” between
measures (and so also between a measure and its Bregman projection), it is convenient to use
the Kullback-Leibler divergence. We define these notions next.

For measures µ and ⌫ over a probability space U = (U,�), the Kullback-Leibler divergence
between µ and ⌫ over U is D(µ||⌫) = Ex2�[µ(x) · log(µ(x)/⌫(x))]� Ex2�[µ(x)] + Ex2�[⌫(x)].

Definition 5.1 (Bregman projection). Let ; 6= � ✓ [0, 1]N be any closed convex set of measures,
and let ⌫ 2 [0, 1]N be any measure. The Bregman projection of ⌫ onto �, denoted by P�⌫, is
P�⌫ = argmin�2�D(�||⌫).

Note that, for ⌫ 2 �, we have P�⌫ = ⌫ (since D(�||⌫) � 0, and D(�||⌫) = 0 i↵ � = ⌫).
For � 2 [0, 1], we denote by P�⌫ the Bregman projection of a measure ⌫ onto the set �� =

{⌫ 2 [0, 1]N | d�(⌫) � �} of �-dense measures; note that �� is a convex and closed set. As shown
by [BHK09, Lemma 3.1], the projection P� has the following nice form. For a measure ⌫ over
U with d�(support[⌫]) � �, for some � 2 [0, 1], we have P�⌫ = trunc[c · ⌫] for the smallest
constant c � 1 such that the measure trunc[c · ⌫] has density � in U .

We use the divergence as a “distance” between measures. The crucial property of Bregman
projections is given by the following theorem of Bregman.6 Intuitively, it says that if a measure
� 2 �, for some closed convex set �, is close to a measure ⌫ (which may be outside of �), then
� is as close (or even closer) to the projection P�⌫ of ⌫ onto �.

Theorem 5.2 ([Bre67]). Let � be any non-empty closed convex set of measures, and let �, ⌫ be
measures, with � 2 �. Then D(�||P�⌫)+D(P�⌫||⌫)  D(�||⌫), and hence, D(�||P�⌫)  D(�||⌫).

Bregman projections can be relaxed to approximate Bregman projections:

Definition 5.3 (approximate Bregman projections). For a non-empty closed convex set � of
measures and a parameter ↵ � 0, a measure ⌫⇤ 2 � is called an ↵-approximate Bregman
projection of a measure ⌫ onto �, denoted by ↵-P�⌫, if for all � 2 �, D(�||⌫⇤)  D(�||P�⌫) +↵.

Approximate Bregman projections onto �� are e�ciently computable:

Lemma 5.4 ([BHK09]). For � 2 [0, 1], let ⌫ be a measure over U = (U,�) such that P�⌫ =
trunc[c · ⌫] for c 2 [1, 1 + ⇣], where ⇣ > 0. Suppose we have oracle access to ⌫, and can
sample an element from U in time t. Then, for any p, ✏ 2 (0, 1), we can compute an implicitly
represented approximate projection (✏�)-P�⌫ in time O

�
t��1✏�2(log log ⇣✏�1 + log p�1)

�
, with

probability 1� p. Moreover, the computed approximate projection has the form trunc[c̃ · ⌫], for
some c̃ 2 [1, 1 + ⇣].

6D is a Bregman divergence associated with a generalized entropy function Ent�(µ) = �E�[µ · log µ], which
can be shown to be a Bregman function; see [CZ97] for details.
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Finally, we get the following generalization of the Total Loss Lemma due to[BHK09] for the
general probability space U = (U,�). The lemma captures the setting of a two-player game where
one of the players is starting with some measure µ1, and in each round t updates her current
measure to the new measure µt+1 by taking into account the “penalty” function mt received
from the other player; the update is through a simple multiplicative procedure, followed by an
approximate Bregman projection onto the desired set � of measures. Intuitively, the lemma
says that the total loss incurred in the game from using measures µt is not much worse than the
total loss from using an arbitrary single measure µ in every round t of the game, where µ could
depend on all the penalty functions mt played in the game.

The proof of the following lemma is identical to that of Lemma 4.1 in [BHK09].7

Lemma 5.5 (Total Loss Lemma [BHK09]). For a probability space U = (U,�), let � be a non-
empty closed convex set of measures over U . Let ✏ 2 (0, 12) and let T 2 N be arbitrary. Let
µ1 2 � be an arbitrary measure over U , and, for 1  t < T , let mt : U ! [0, 1] be an arbitrary
function (“penalty”). Define, for each 1  t < T , the measures ⌫t+1(x) = (1 � ✏)m

t(x) · µt(x)
and µt+1 = ↵-P�⌫

t+1. Then, for every measure µ 2 �, we have

TX

t=1

E�(µ
t ·mt)� ↵

✏ · T  (1 + ✏) ·
TX

t=1

E�(µ ·mt) + 1
✏ ·D(µ||µ1). (7)

5.2 DMT algorithm

Now we state the following online-learning algorithmOLL which is essentially due to Zhang [Zha11],
based on [FS99, BHK09]. We generalize the algorithm to arbitrary finite probability space
U = (U,�).

The algorithm is given as input a distribution ⇢ over U , a class F of tests f : U ! [0, 1], and
parameters 0 < ✏, � < 1. Starting with the constant �-dense measure µ1 such that µ1(x) = �
for all x 2 U , the algorithm iterates doing multiplicative updates and approximate Bregman
projections to get a new �-dense measure µt+1 from the current measure µt. The algorithm uses
as “penalty” functions mt the tests f which witness that µt is not a model for ⇢.

Algorithm 1 OLL[⇢,F , �, ✏] (Generalized Dmt-Algorithm[Zha11])

t = 1, define the measure µ1 by µ1(x) = �, for each x 2 U

T = 16
✏2

log(1� ), ↵ = ✏2�
16

while t < T do
if 9f 2 F such that f [(µt)�]� f [⇢] > ✏ then
mt = f for some f 2 F satisfying f [(µt)�]� f [⇢] > ✏
⌫t+1(x) = (1� ✏

4)
mt(x)µt(x)

µt+1 = ↵- P�⌫
t+1

t = t+ 1
else
return MODEL, µt

end if
end while
return DISTINGUISHER, F = 1

T

PT
t=1m

t

After at most T = O(✏�2 log ��1) iterations, either we get, for some 1  t  T , a measure
µt that is a �-dense model for the distribution ⇢, or we get that the average F of all penalty
functions mt is a “universal” distinguisher in the sense that the same test F witnesses that every
�-dense measure is not a model for ⇢. More precisely, we have the following.

7[BHK09] had a typo: the factor 1/✏ was missing in the last term on the right-hand side of Eq. (7).
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Theorem 5.6 (Analysis of OLL). For a finite probability space (U ,�), a class F , a distribution
⇢ over U , and parameters ✏, � 2 (0, 1), the algorithm OLL finds

1. either a �-dense (✏,F)-model µt for ⇢, for some 1  t  T ,

2. or a test F : U ! [0, 1] such that F [µ�]� F [⇢] > ✏/4 for every measure µ with d�(µ) = �
(thereby witnessing that ⇢ has no �-dense (✏/4,F)-model).

Proof. Observe that the algorithm OLL outputs “MODEL” only if, for some µt, it holds that
f [(µt)�] � f [⇢]  ✏ for every f 2 F . Since the class F is closed under negation, the same
inequality holds also for f̄ , which implies that f [⇢]� f [(µt)�]  ✏ for every f 2 F as well. So we
get that |f [(µt)� � f [⇢]|  ✏ for all f 2 F , and hence, µt is a model for ⇢. By construction, all
measures µj , 1  j  T , are �-dense, and so µt is a �-dense (✏,F)-model for ⇢.

Now suppose that the algorithm OLL outputs “DISTINGUISHER”. We will show that in
this case the function F constructed by the algorithm is such that, for every measure µ over U
with d�(µ) = �,

F [µ�]� F [⇢] > ✏
4 . (8)

Observe that F has complexity T relative to F as F = 1
T

PT
t=1m

t for mt 2 F . Using Eq. (8) and
the fact that F is an average of tests mt from F , we get that some mt (with t depending upon
µ) is a witness to µ not being an (✏/4,F)-model for ⇢. Hence, ⇢ has no �-dense (✏/4,F)-model.

Now we prove Eq. (8). First, by the construction of F , we have

X

T

E(µt)� [m
t] >

X

T

E⇢[m
t] + ✏T, (9)

where
P

T denotes the summation
PT

t=1. By the Total Loss Lemma, Lemma 5.5, we get

X

T

E�[µ
t ·mt]  (1 + ✏

4)
X

T

E�[µ ·mt] + 4
✏D(µ||µ1) + 4↵

✏ T. (10)

We have E�[µt · mt] = d�(µt) · E(µt)� [m
t], and hence, using the fact that d�(µt) � � for all

1  t  T and Eq. (9), we conclude that

X

T

E�[µ
t ·mt] � � ·

X

T

E(µt)� [m
t] > �

 
X

T

E⇢[m
t] + ✏ · T

!
= � · T · (E⇢[F ] + ✏) . (11)

Similarly, we have that E�[µ ·mt] = d�(µ) · Eµ� [m
t] = � · Eµ� [m

t], and so,

X

T

E�[µ ·mt] = � · T · Eµ� [F ]. (12)

We also have
D(µ||µ1) = E�

h
µ · log

⇣
µ
µ1

⌘i
+ d�(µ1)� d�(µ)  � log ��1, (13)

using the fact that µ1(x) = � for all x 2 U , and hence d�(µ1) = � = d�(µ), as well as the
inequality µ(x) · log(µ(x)/�)  µ(x) · log(1/�), which follows from 0  µ(x)  1 and 0 log 0 = 0.

Using Eqs. (11)–(13) inside Eq. (10), we get

�T · (E⇢[F ] + ✏) <
⇣
1 +

✏

4

⌘
�T · Eµ� [F ] +

4

✏
� log ��1 +

4↵

✏
· T. (14)

Dividing both sides of Eq. (14) by �T , and using the definition of T = 16✏�2 log ��1 and ↵ =
✏2�/16, we get Eµ� [F ] � E⇢[F ] > ✏ � (✏/4) · Eµ� [F ] � (✏/4) � (✏/4). The latter is at least ✏/4,
since Eµ� [F ]  1.
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Remark 5.7. Consider a two-player zero-sum game where the first player chooses f 2 F and
the second player chooses a �-dense measure µ, with the payo↵ for the first player given by
f [µ�] � f [⇢]. Then OLL[⇢,F , �, ✏] returns either a mixed strategy for the second player which
does well against every strategy of first player, or vice versa for the first player. Thus OLL
finds approximately optimal mixed strategies for this class of zero-sum games between �-dense
measures and algorithms F . In fact, the algorithm OLL is the Multiplicative Weights Algorithm
of Freund and Schapire [FS99] for approximately solving two-player zero-sum games, combined
with taking Bregman projections (as in the Smooth Boosting Algorithm of Kale[Kal07] and Barak
et al. [BHK09]); the projections onto the set �� of �-dense measures are taken to ensure that the
strategy of the second player at each stage is a �-dense measure.

5.3 Constructiveness of Algorithm OLL

The function F computed in the “DISTINGUISHER” branch of the algorithm OLL clearly
satisfies the conditions of the Constructive MinMax version of Dense Model Theorem with
� = 16✏�2 log ��1.

The complexity of the measures µj , for 1 < j  T , produced by the algorithm is O(j).
Indeed, µ1 has complexity 1. For j > 1, ⌫j is obtained from µj�1 using one exponentiation and
multiplication. Finally, the approximate Bregman projection of ⌫j requires two extra operations:
scalar multiplication and truncation, by Lemma 5.4. Overall, µj is obtained from µj�1 using a
constant number of operations. So, the complexity of model µt returned by the algorithm OLL
in its “MODEL” branch is at most O(t)  O(�). Thus, we have:

Corollary 5.8. Algorithm OLL provides the constructive MinMax version of DMT for �(✏, �) =
O(✏�2 log ��1) and c = 4.

5.4 Avoiding exponentiation

As observed earlier, if F is a Boolean class, the operation of limited exponentiation is not needed.
In general, when F is a class of [0, 1]-bounded functions, we can use thresholding to get from
f 2 F satisfying the condition in the if -statement of the algorithm OLL a Boolean function
f 0 = th✓(f), for some ✓ 2 [0, 1], such that f 0 satisfies the same condition.

Indeed, first it is easy to see that, for any function g : U ! [0, 1], we have for every x 2 U ,
g(x) = E✓2[0,1][th✓[g(x)]]. Hence, for any g and any distribution ⇡ over U , we get E⇡[g] =
E✓2[0,1][E⇡[th✓[g]]]. Finally, using this equality, the linearity of expectation, and averaging, we
conclude that if there is some f such that f [(µt)�]� f [⇢] > ✏, then there is also some ✓ 2 [0, 1],
such that, for f 0 = th✓[f ], we have f 0[(µt)�]� f 0[⇢] > ✏.

It follows that for an arbitrary class F , we either get a model µt of low complexity without
using exponentiation, or get a universal distinguisher F that is the average of few thresholded
functions from F . Thus, we can trade the simplicity of the model for the extra complexity of
the universal distinguisher.

5.4.1 Algorithmic issues

Given access to an oracle which produces a function f 2 F witnessing that a current measure µt

is not an (✏,F)-model for ⇢, the algorithm OLL will e�ciently construct either a dense model µ
for ⇢ or a universal distinguisher F . Thus, we actually get an algorithmic constructive MinMax
version of DMT.

In case one wishes to avoid the exponentiation operation following the “thresholding” ap-
proach outlined above, one needs to find appropriate thresholds ✓ e�ciently. This can be done
by random sampling, with some slight loss in parameters. We explain this point in more detail
next.

Consider the following modification OLL0 of the algorithm OLL.
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Algorithm 2 OLL0[⇢,F , �, ✏] (Modified Dmt-Algorithm)

t = 1, define the measure µ1 by µ1(x) = �, for each x 2 U

T = 256
✏2

log(1� ), ↵ = ✏2�
256

while t < T do
if 9f 2 F such that f [(µt)�]� f [⇢] > ✏ then
let f 2 F be any function such that f [(µt)�]� f [⇢] > ✏
for each 0  n  d2✏�1e, set fn = thn✏/2(f)
let 0  n⇤  d2✏�1e be such that, with high probability, fn⇤ [(µt)�]� fn⇤ [⇢] > ✏/4
mt = fn⇤

⌫t+1(x) = (1� ✏
16)

mt(x)µt(x)
µt+1 = ↵- P�⌫

t+1

t = t+ 1
else
return MODEL, µt

end if
end while
return DISTINGUISHER, F = 1

T

PT
t=1m

t

The estimation of fn[⇢] and fn[(µt)�] is done by random sampling; by Cherno↵ bounds, we
can achieve the additive error at most ✏/8 for each, with high probability, in time poly(✏�1).
Assuming that the required integer value n⇤ exists (and hence can be e�ciently found by random
sampling), the rest of the algorithm is the same as before, and so the old analysis of Theorem 5.6
applies.

It remains to argue that n⇤ always exists. To this end, we shall need the following basic
properties of the threshold operation.

Lemma 5.9. Let g : U ! [0, 1] be any function, and let ⇢ and ⌧ be any distributions over U .
Suppose E⇢[g] > E⌧ [g] + ✏ for some ✏ 2 [0, 1]. Then there exist ✓, n satisfying:

1. [RTTV08] ✓ 2 [✏/2, 1] and E⇢[th✓[g]] > E⌧ [th✓�✏/2[g]] + ✏/2.

2. n 2 N, n  d2✏�1e such that E⇢[thn✏/2[g]] > E⌧ [thn✏/2[g]] + ✏/2.

Proof. For item (1), suppose it fails, i.e., for every ✓ 2 [✏/2, 1], E⇢[th✓[g]]  E⌧ [th✓�✏/2[g]] + ✏/2.
Using the fact that tht[g(x)] as a function of t with x fixed is piece-wise constant with only

discontinuity at g(x) = t, we get E⇢[g] = E✓[E⇢[th✓[g]]] =
R ✏/2
0 E⇢[th✓[g]]dt +

R 1
✏/2 E⇢[th✓[g]]dt 

✏/2+
R 1
0 (E⌧ [th✓[g]] + ✏/2) dt, yielding E⇢[g]  E✓2[0,1][E⌧ [th✓[g]]]+✏ = E⌧ [g]+✏. A contradiction.

Finally, ✓ in item (1) must satisfy ✓ 2 [n✏/2, (n+ 1)✏/2] for some n 2 N with n  2d✏�1e. It
follows that n✏/2 2 [✓� ✏/2, ✓]. By item (1), we get E⇢[thn✏/2[g]] � E⇢[th✓[g]] > E⌧ [th✓�✏/2[g]] +
✏/2 � E⌧ [thn✏/2[g]]+ ✏/2, where we used the fact that th↵[v] � th� [v] for any v,↵,� 2 [0, 1] such
that ↵  �.

The existence of n⇤ required by the modified algorithm OLL0 follows from item (2) of
Lemma 5.9. Using our previous analysis of algorithm OLL, we get the following analysis of
the modified algorithm OLL0.

Theorem 5.10 (Analysis ofOLL0). For a finite probability space (U ,�), a class F , a distribution
⇢ over U , and parameters ✏, � 2 (0, 1), the algorithm OLL0 finds

1. either a �-dense (✏,F)-model µt 2 FO(t) for ⇢, for some 1  t  T ,

2. or a test F : U ! [0, 1] such that F [µ�]�F [⇢] > ✏/16 for every measure µ with d�(µ) = �,
where F = 1

T

PT
t=1m

t, with mt a thresholded function from F .
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