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Abstract

This paper connects two fundamental ideas from theo-

retical computer science: hard-core set construction, a type

of hardness amplification from computational complexity,

and boosting, a technique from computational learning the-

ory. Using this connection we give fruitful applications

of complexity-theoretic techniques to learning theory and

vice versa. We show that the hard-core set construction

of Impagliazzo [15], which establishes the existence of dis-

tributions under which boolean functions are highly inap-

proximable, may be viewed as a boosting algorithm. Us-

ing alternate boosting methods we give an improved bound

for hard-core set construction which matches known lower

bounds from boosting and thus is optimal within this class

of techniques. We then show how to apply techniques from

[15] to give a new version of Jackson’s celebrated Har-

monic Sieve algorithm for learning DNF formulae under

the uniform distribution using membership queries. Our

new version has a significant asymptotic improvement in

running time. Critical to our arguments is a careful analy-

sis of the distributions which are employed in both boosting

and hard-core set constructions.
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1. Introduction

1.1. Boosting and Hard-Core Sets

This paper connects two fundamental ideas from theoret-

ical computer science: hard-core set construction, a type of

hardness amplification from computational complexity, and

boosting, a technique from computational learning theory.

We refer to a hardness amplification as a result of the

following form: given a boolean function � that is mildly

inapproximable by circuits of some bounded size �, con-
struct, from � , a new function � � that is highly inapprox-

imable by all circuits of size closely related to �. Hardness
amplification results are a crucial component of recent at-

tempts to derandomize BPP [24, 3, 16]. Perhaps the most

famous hardness amplification result is Yao’s XOR-lemma

[14], which states that if a boolean function � is mildly in-

approximable by circuits of size � then the XOR of several

independent copies of � is highly inapproximable for cir-

cuits of size closely related to �.
While the goal of hardness amplification is to amplify

some small initial “hardness” of a boolean function, the

goal of boosting is to “boost” some small initial advantage

over random guessing that a learner can achieve in Valiant’s

PAC (Probabilistically Approximately Correct) model of

learning. Roughly speaking, a strong learning algorithm in

this model is an algorithm which, given access to random

labelled examples ��� ����� drawn from any distribution

�� can generate a hypothesis � such that ���������� �
����℄ � � � � for any � � �� while a weak learning al-

gorithm [22] can only do this for some ��	 � � � ��
Schapire [25] and then Freund [10, 11] gave boosting al-

gorithms which convert weak learners into strong learners,

thus proving the equivalence of weak and strong learnabil-

ity. Since then, boosting has been applied in a wide variety

of contexts and continues to be an active area of research

[6, 7, 8, 9, 13, 20, 26]. All known boosting algorithms work

by using the weak learning algorithm several times on a se-

quence of carefully constructed distributions.



Reference: Set size parameter: Circuit size parameter:

Impagliazzo [15] � 	�
���� � �

Nisan [15] � 	�
��
�����
������ � �

This Paper ��	�
�������� 	�
��
����������� � �

Table 1. Comparison of known hard-core set constructions.

Superficially, boosting and hardness amplification seem

to have opposite goals— boosting constructs a hypothesis

which closely approximates a function � while hardness

amplification results prove that certain functions are hard to

approximate. The proof techniques employed in both areas,

however, have a similar structure. All known hardness am-

plification results go by contradiction: assuming there exists

a circuit � capable of mildly approximating � �, one proves

the existence of a slightly larger circuit which closely ap-

proximates � . From this perspective, a hardness amplifica-

tion proof resembles a type of boosting procedure: circuits

which mildly approximate a function � � (these correspond

to the hypotheses output by the weak learner) are combined

to form a new circuit computing � on a large fraction of

inputs.

In an important paper, Impagliazzo [15] reduces the

problem of amplifying the hardness of a function � to the

problem of constructing a distribution � such that � is

highly inapproximable by small circuits for inputs chosen

according to �� He then constructs such a distribution and

uses it to prove an XOR lemma. Impagliazzo also shows

that the existence of such a distribution implies the exis-

tence of a “hard-core set” as defined in Section 2.1; we thus

refer to Impagliazzo’s method of constructing such a distri-

bution as a hard-core set construction. Schapire [25] was the

first to point out that the existence of a boosting algorithm

implies the existence of such a distribution.

1.2. Our Results1

In this paper we give an explicit correspondence be-

tween the distributions that arise in Impagliazzo’s hard-core

set construction and the distributions constructed by boost-

ing algorithms. This observation allows us to prove that

the hard-core set construction of Impagliazzo is a boost-

ing algorithm when the initial distribution is uniform. As

we will show, there are two important parameters which

boosting and hard-core set constructions share: the num-

ber of “stages” required and the “boundedness” of the dis-

tributions which are constructed. Interestingly, the proce-

dures which have been used for hard-core set construction

1Our measure size parameter can be improved to �. This improvement

will appear in the final version.

have better “boundedness” and can be used to improve al-

gorithms in computational learning theory, while boosting

algorithms require fewer “stages” and can be used to im-

prove hard-core set construction.

We first show how to use known boosting algorithms to

obtain new hard-core set constructions. In [15], Impagli-

azzo proves the following: given a function � such that no

circuit of size less than � correctly computes � on more than

�� � ��	� inputs, then for any 
 � ��	 there exists a set 

of size �	� such that no circuit of size 	�
����� can cor-

rectly compute � on more than a ���	 
 
� fraction of the

inputs in 
. By letting known boosting algorithms dictate

the construction of the distributions in Impagliazzo’s proof,

we improve on previous results with respect to the circuit

size parameter with only a small loss in the set size parame-

ter. As explained in Section 4.3, we believe our circuit size

parameter to be optimal with respect to this class of tech-

niques. Table 1 summarizes our hard-core set construction

results.

We also show how to use Impagliazzo’s hard-core set

construction to obtain a new variant of Jackson’s break-

through Harmonic Sieve algorithm [17] for learning DNF

formulae with membership queries under the uniform dis-

tribution. Our variant is substantially more efficient than

the original algorithm. Jackson’s original algorithm runs in

time �	���������, where � is the number of variables in the

DNF formula, � is the number of terms, and � is the accu-
racy parameter; our variant runs in time �	��������. (We

can further improve the running time to �	�������� at the
cost of learning using a slightly more complicated class of

hypotheses).

In recent work Bshouty, Jackson and Tamon [5] have

improved the running time of the Harmonic Sieve to
�	��������, where � is the number of distinct variables

which appear in the minimal DNF representation of the tar-

get formula. Our results improve the running time of their

new algorithm to �	�������� time steps, which is the fastest

known algorithm for PAC learning DNF with membership

queries under the uniform distribution.

Our main technical contribution is a careful analysis of

the distributions constructed during the boosting process.

We show that boosting procedures which construct distri-

butions with high minimum entropy are desirable for good

hard-core set constructions.



1.3. Related Work

Boneh and Lipton [4] have applied Yao’s XOR-lemma

to prove the equivalence of weak and strong learnability for

certain types of concept classes under the uniform distribu-

tion. Their result applies to concept classes closed under a

polynomial number of XOR operations.

1.4. Organization

In Section 2 we give an overview of the hard-core set

construction found in [15]. In Section 3 we outline the

structure of all known boosting algorithms. In Section 4

we give an explicit connection between the constructions

detailed in Sections 2 and 3 and show how to apply boost-

ing techniques to obtain new hard-core set constructions. In

Section 5 we show how the techniques described in section

2 can be used to improve the running time of Jackson’s algo-

rithm for learning DNF formulae. We also mention related

algorithms in learning theory where our techniques can be

applied.

2. Hard-Core Set Construction Overview

2.1. Definitions

Our first definition, taken from [15], formalizes the no-

tion of a function which is hard to approximate. (Readers

who are familiar with the notation of [15] will notice that

we are using different variables; the reasons for this will

become clear in Section 4.)

Definition 1 Let � be a boolean function on ��� ��� and�
a distribution on ��� ���� Let � � � � ��	 and let � �
� � 	���� We say that � is �-hard for size � under � if

for any boolean circuit � with at most � gates, we have

�������� � ����℄ � �� �.

In other words, any circuit of size at most �must disagree

with � with probability at least � for � drawn according to

�� Throughout the paper we use 	 to denote the uniform

distribution on ��� ����

Definition 2 A measure on ��� ��� is a function � �
��� ��� 
 ��� �℄� The absolute size of a measure � is de-

noted by �� � and equals
�

�
����� the relative size of �

is denoted ���� and equals �� ��	��

Definition 3 For any real valued function �, ����� de-

notes���� ������.

The quantity 
����������� is often referred to as the

minimum entropy of �. There is a natural correspon-

dence between measures and distributions: the distribution

�� induced by a measure � is defined by �� ��� �
������� �� Conversely, if � is a distribution, then the

measure �� induced by � is defined by ����� �
����������. Thus �� is the largest measure which is

a constant-multiple rescaling of � (note that � itself is

a measure, though typically one which has much smaller

size than ��). It is clear that ���� � ������� and

����� � �����	����. Thus, large measures correspond

to distributions which do not assign large weight to any

point (i.e., have high minimum entropy).

The next definition is also from [15]:

Definition 4 We say that � is 
-hard-core on� for size � if
���� ����� � ����℄ � ��	 
 
 for every circuit � of size

at most �� For 
 � ��� ���� we say that � is 
-hard-core
on 
 for size � if � is 
-hard-core on�� for size �� where
����� is the characteristic function of 
�

2.2. Existence of Hard-Core Measures

The following theorem, due to Impagliazzo [15], is the

starting point of all our results:

Theorem 5 [15] Let � be �-hard for circuits of size � under
	 and let � � 
 � �� Then there is a measure� on ��� ���

with ���� � � such that � is 
-hard-core on � for size

�� � 	���
����

Proof Sketch: Assume by way of contradiction that for ev-

ery measure � with ���� � � there is a circuit �� of

size at most �� such that ���� ����� � �� ���℄ � ��	

�
Now consider the algorithm IHA which is given in Figure

1. This algorithm iteratively modifies � until its relative

size is less than �. After each modification we obtain a cir-

cuit�� as above. Once the relative size of� becomes less

than � we combine the circuits obtained during the process

to contradict the original assumption. The following eas-

ily verifiable claims are useful for understanding how IHA

works:


 ����� is the margin by which the majority vote of

��� � � � � �� correctly predicts the value of �����


 The measure ���� assigns weight � to points where

the margin of correctness is large, weight � to points

where the margin is nonpositive, and intermediate

weight to points where the margin is positive but small.

Impagliazzo proves that after at most �� � 	������
���
cycles through the loop, ����� must be less than �� Once
this happens and we exit the loop, it is easy to see that

� � ������� � � � � ����� agrees with � on all inputs ex-

cept those which have ����� � � and hence ����� � ��
Since ����� � �� this implies that ��� ����� � ����℄ �
�� ����� � �� �� But � is a majority circuit over at most



Input: � � �� � � �� boolean function �
Output: a circuit � such that ��� ����� � ����℄ � �� �

1. set �� �
2. ����� � �
3. until 	���� 
 � do
4. let �� be a circuit of size at most �� with �����

����� � ����℄ � �
	 
 �
5. ������ � � if ���� � ������ ������ � �� otherwise

6. ����� �
�

�����
��� ���

7. ������� � � if����� � �
��� ������� � � if����� � �� ������� � �� ������� otherwise
8. set �� � 
 �
9. � �������� ��� � � � � �����
10. return �

Figure 1. The IHA algorithm.

�� circuits each of size at most � �� and majority over �� in-

puts can be computed by a circuit of size 	����� It follows
that � has at most ����
	���� � � gates, which contradicts
the original assumption that � is �-hard for circuits of size �
under 	 �

Using a non-constructive proof technique, Nisan has es-

tablished a similar result which is reported in [15]. In

Nisan’s theorem the circuit size parameter is slightly worse

as a function of 
 but substantially better as a function of � �

Theorem 6 [15] Let � be �-hard for circuits of size � under
	 and let � � 
 � �� Then there is a measure� on ��� ���

with ���� � � such that � is 
-hard-core on � for size

�� � 	�
��
���	�
��������

In Section 4.2 we will establish results of this type which

have a better circuit size parameter (but a slightly smaller

measure) than either Theorem 5 or Theorem 6.

(We note that Theorems 5 and 6, as well as the theorems

which we will prove later, assert the existence of a large

measure, not a large set as was promised in Section 1. Using

a straightforward probabilistic argument, Impagliazzo has

shown in [15] that if � is 
-hard-core on� for size � � with
���� � �� then there is a set 
 � ��� ��� with �
� � �	�

such that � is 	
-hard-core on 
 for size � ��)

3. Boosting Overview

In this section we define the learning model, weak

and strong learning, and boosting, which converts a weak

learner to a strong one.

3.1. Definitions

We take as our learning frameworkValiant’s widely stud-

ied PAC (Probably Approximately Correct) model of con-

cept learning [27]. In this model a concept class is a collec-

tion� � ������ of boolean functions where each � � ��

is a boolean function on ��� ���� For example, we might

have �� as the class of all boolean conjunctions on � vari-

ables. If � and � are two boolean functions on ��� ���

and � is a distribution on ��� ���� we say that � is an �-
approximator for � under � if �������� � ����℄ � �� ��
The learner has access to an example oracle EX�����
which, when queried, provides a labelled example ��� �����
where � is drawn from ��� ��� according to the distribution
� and � � �� is the unknown target concept which the

algorithm is trying to learn. The goal of the learner is to

generate an �-approximator for � under �� We thus have

the following definition:

Definition 7 An algorithm A is a strong PAC learning algo-

rithm for a concept class � if the following condition holds:

for any � � �� any � � ��� any distribution � on ��� ����
and any � � �� Æ � �, if A is given access to �� �� Æ and

EX������ then A runs in time polynomial in �� ���� Æ���
and �������� and with probability at least � � Æ algorithm

A outputs an �-approximator for � under ��

In the above definition ������� measures the complex-

ity of the function � under some fixed reasonable encoding

scheme. For the concept class DNF which we will consider

in Section 5, ������� is the minimum number of terms in

any disjunctive normal form representation of ��
If the algorithm A is only guaranteed to find a ���	 �


�-approximator for some 
 � �� then we say that A

is a ���	 � 
�-approximate learning algorithm; if 
 �
�������� ��������� for some polynomial ��we say that A is

a weak learning algorithm (The notion of weak learning was

introduced by Kearns and Valiant in [22]). We will abuse

notation and say that A is a ���	 � 
�-approximate learn-

ing algorithm for � if A is a ���	 � 
�-approximate learn-

ing algorithm for the concept class � which consists of the

single function �� In a series of important results, Schapire

[25] and subsequently Freund [10, 11] have shown that if

A is a weak learning algorithm for a concept class �� then
there exists a strong learning algorithm for �� Their proofs



are highly constructive in that they give explicit boosting

algorithms which transform weak learning algorithms into

strong ones. We now formally define boosting algorithms

(a related definition can be found in [12]):

Definition 8 An algorithm B is said to be a boosting algo-

rithm if it satisfies the following condition: for any boolean

function � and any distribution �� if B is given � � �� Æ �
�� � � 
 � ��	� an example oracle EX������ and a

���	�
�-approximate learning algorithmWL for �� then al-
gorithm B runs in time polynomial in �� �������� 
��� ����
and Æ��� and with probability at least � � Æ algorithm B

outputs an �-approximator for � under��

3.2. Structure of Boosting Algorithms

All known boosting algorithms rely crucially on the fact

that the weak learning algorithm WL can find a ���	 � 
�-
approximator for � under� � for any distribution� �� as long
as WL is given access to the example oracle EX���� ��� We

give the following high-level definition:

Definition 9 A canonical booster is a boosting algorithm

which has the following iterative structure:


 At stage 0 the algorithm starts with �� � � and uses

WL to generate a ���	� 
�-approximator �� for � un-

der ���


 At stage � the boosting algorithm does two things: (1)

constructs a distribution�� which favors points where

the previous hypotheses ��� � � � � ���� do poorly at pre-
dicting the value of �� and (2) simulates the example

oracle EX������ and lets WL access this simulated ex-

ample oracle to produce a hypothesis �� which is a

���	� 
�-approximator for � under ���


 Finally, after doing this repeatedly for several stages,

the boosting algorithm combines the hypotheses

��� � � � � ���� in some way to obtain a final hypothesis

� which is an �-approximator for � under��

We feel that this definition captures the essence of known

boosting algorithms.

4. Hard-Core Set Construction from Boosting

4.1. A Structural Similarity

From the descriptions of the hard-core set construction

of Section 2 and the canonical boosting algorithmof Section

3, one can see a close structural resemblance between the

IHA algorithm and the canonical boosting algorithm out-

lined above. To be more specific, just as IHA assumes that

at each stage there is a circuit �� for which ����� ����� ��
����℄ � ��	�
� the canonical boosting algorithm assumes

that WL can generate at each stage a hypothesis � � for which
���� ����� �� �����℄ � ��	� 
� The induced distributions
���

of IHA correspond precisely to the distributions� � of

the canonical boosting algorithm (note that IHA starts off

with the measure �� � � which corresponds to the uni-

form distribution 	 � ���� Finally, just as the canonical

boosting algorithm combines the hypotheses ��� � � � � ����
in some fashion to obtain a final hypothesis � which has

��� ����� � ����℄ � � � �� the IHA algorithm combines

the circuits ��� � � � � ���� by taking majority to obtain a cir-

cuit � such that ��� ����� � ����℄ � �� ��
We conclude that IHA is an algorithm which succeeds in

boosting provided that the starting distribution is the uni-

form distribution 	 . Since boosting algorithms from com-

putational learning theory will work for any starting distri-

bution, a priori it seems as if it should be possible to use any

boosting algorithm in place of IHA and obtain a hard-core

set construction. In the next section we prove a theorem

which formalizes this idea and emphasizes the parameters

which are important to obtain a good hard-core set construc-

tion.

4.2. A General Hard-Core Set Construction

Definition 10 Let� be a distribution over ��� ���� For � �
�� we say that � is �-bounded if ���	��� � ��

As an immediate consequence of Definitions 2 and 10, we

have

Observation 11 A distribution � is �-bounded iff

����� � ����

Definition 12 Let B be a canonical boosting algorithm

which takes as input �� Æ� 
� an example oracle EX������
and a ���	� 
�-approximate learning algorithm WL for ��

1. We say that B is a ���� 
�-stage boosting algorithm if

the following holds: For all example oracles EX�����
and ���	 � 
�-approximate learners WL for �� algo-
rithm B simulates at most � � ���� 
� distributions

������ � � � ����� for WL and uses WL to generate at

most � hypotheses ��� � � � � �����

2. We say that B is a ���� 
�-bounded boosting algo-

rithm if the following holds: For all functions � and

���	 � 
�-approximate learners WL, when B is given

EX���	� and WL, with nonzero probability both of the

following events occur: (i) the simulated distributions

��� � � � ����� are each ���� 
�-bounded, and (ii) the

hypothesis � which � outputs satisfies �������� �
����℄ � �� ��



Note that the property of the distributions � � described

in part 2 of the above definition is similar (but not identical)

to Levin’s notion of “dominated” distributions [23].

Now we can state the following theorem which general-

izes Impagliazzo’s hard-core set construction from [15].

Theorem 13 Let � be a ���� 
�-stage, ���� 
�-bounded
boosting algorithm which outputs as its final hypothesis a

circuit of size � over inputs ��� � � � � ����. Let � be �-hard
for circuits of size � under 	 and let � � 
 � �� Then there
is a measure � on ��� ��� with ���� � ������ 
� such
that � is 
-hard-core on� for size � � � �� � ������� 
��

Proof: The proof is analogous to the proof of Theorem 5.

Assume by way of contradiction that for every measure�
with ���� � ������ 
� there is a circuit �� of size at

most �� such that ���� ����� � �� ���℄ � ��	 
 
� By
Observation 11, this implies that for every ���� 
�-bounded
distribution � there is a circuit �� of size at most �� such
that �������� � �����℄ � ��	 
 
�

Now run the boosting algorithm B on inputs �� Æ� 
� and
EX���	�� Since B is ���� 
�-bounded, with nonzero prob-

ability we have that (i) every distribution � � which B sim-

ulates will be ���� 
�-bounded, and (ii) the final hypothesis

which B outputs is an �-approximator to � under the orig-

inal distribution 	 � By (i), there must exist a circuit �� of

at most �� gates which is a ���	 � 
�-approximator for �
under ��� Give B this circuit when it calls WL on distribu-

tion ��� Now by (ii), the final hypothesis which B outputs

must be an �-approximator to � under the original distribu-

tion 	 � But since B is ���� 
�-stage, this final hypothesis is a
circuit of size at most � 
 ������ 
� � �� which contradicts

the original assumption that � is �-hard for circuits of size �
under 	 �

4.3. New Hard-Core Set Constructions

Here we apply Theorem 13 to obtain new hard-core set

constructions from known boosting algorithms. We proceed

in stages. First, we show how two different boosting algo-

rithms yield different hard-core set constructions. Next, we

combine these boosting algorithms to achieve a new hard-

core set construction which subsumes and improves results

of Impagliazzo and Nisan in the circuit size parameter and

has a slightly worse measure size parameter.

We first consider Freund’s boost-by-majority algorithm

from [10] which, following Jackson [18], we refer to as F1.

Algorithm F1 simulates at most � � 	�
�� 
�������� dis-
tributions �� and combines its � hypotheses using the ma-

jority function. Jackson’s analysis ([18], pp. 57–59) yields

the following fact about F1:

Fact 14 If F1 is given inputs �� Æ� 
� EX����� and a ���	�

�-approximate weak learner WL for �� then with high prob-
ability each distribution �� which F1 simulates for WL sat-

isfies

������ � 	������ � ������

This immediately implies that �� is 	������-bounded.
We thus obtain the following hard-core set construction:

Theorem 15 Let � be �-hard for circuits of size � under 	
and let � � 
 � �� Then there is a measure � on ��� ���

with ���� � ����� such that � is 
-hard-core on � for

size �� � 	�
��
�������������

Next, we consider Freund’s later BFilt algorithm from

[12] (the name comes from the fact that the algorithm

“filters” examples from the original distribution to sim-

ulate new distributions). Like F1, algorithm BFilt is a

�-stage boosting algorithm for � � 	�
�� 
���������
BFilt combines its ���	� 
�-approximators to obtain an �-
approximator for � by using a majority function on � in-

puts which may have some random inputs. A straightfor-

ward argument shows that some circuit of size 	��� is a

�-approximator for � . To analyze the boundedness of B Filt ,

we use the following fact which is implicit in [12]:

Fact 16 If BFilt is given inputs �� Æ� 
� EX����� and a

���	 � 
�-approximate weak learner WL for �� then with

high probability each distribution � � which BFilt simulates

for WL satisfies

������ � 	�
����������
�� � ������

Since Fact 16 implies that BFilt is 	�
����������
��-
bounded, we obtain

Theorem 17 Let � be �-hard for circuits of size � under 	
and let � � 
 � �� Then there is a measure � on ��� ���

with ���� � ���
�
����������� such that � is 
-hard-
core on� for size �� � 	�
��
�������������

Finally we establish our strongest hard-core set construc-

tion by combining the previous two approaches. In [11],

Freund describes a two-level boosting algorithm which

works as follows: algorithm F1 is used to boost from accu-

racy ���	� 
� to accuracy ���� and algorithm BFilt boosts

from accuracy ��� to accuracy � by taking F1 as its weak

learner. We call this combined algorithm BComb .

Lemma 18 The boosting algorithm BComb is an

	�
�� 
��������-stage boosting algorithm.

Proof: The top level ofBComb , which uses algorithmBFilt,

takes 	�
�������� stages since the weak learner which it

uses is F1 which provides ���	� 
 ��-accurate hypotheses



with 
� � ���� The bottom level, which uses algorithm F1,

takes	�
��� stages since it boosts a ���	�
�-approximate

learner to accuracy ���� Consequently, the combined algo-

rithm BComb uses the claimed number of stages.

Lemma 19 BComb is an 	�
����������-bounded boosting
algorithm.

Proof: Since BFilt is boosting from accuracy ��� to accu-

racy � using F1 as its weak learner, Fact 16 implies that

each distribution�� which BFilt passes to F1 satisfies

������ � 	�
���������� � ������

Since F1 is boosting from accuracy ���	� 
� to accuracy

���� Fact 14 implies that if ��� is the distribution which F1
passes to WL, then

������� � 	��� � �������

Combining these two equations, we find that

������� � 	�
���������� � ������

Finally, we note that the final hypothesis which BComb
outputs is a depth 2 majority circuit over the weak hypothe-

ses ��� since both F1 and BFilt combine their hypotheses

using the majority function. A straighforward bound on the

size of this majority circuit yields our strongest hard-core

set construction:

Theorem 20 Let � be �-hard for circuits of size � under 	
and let � � 
 � �� Then there is a measure� on ��� ���

with ���� � ����
����������� such that � is 
-hard-core
on� for size �� � 	�
��
�������������

Freund [12] has shown that any successful boosting al-

gorithm must combine at least ��
�� 
�������� weak hy-

potheses to achieve error less than � (this matches the upper

bound given in Lemma 18). Thus, for any hard-core set

construction falling within this framework our circuit size

parameter is optimal.

4.4. A Boosting Algorithm from IHA

We note that Impagliazzo’s proof shows that IHA is a

boosting algorithm under the uniform distribution, not un-

der an arbitrary initial distribution. In fact, it is possible

to extend IHA to obtain a true boosting algorithm which

can be used under any initial distribution. This is done by

using standard boost-by-sampling techniques [11, 13]; the

basic idea is to draw a sample 
 of examples from the ini-

tial distribution � and then run IHA on the uniform dis-

tribution over 
 to obtain a hypothesis � which is correct

on all points in 
�Well-known results on PAC learning and

the Vapnik-Chervonenkis dimension [2] imply that if � be-

longs to a concept class which is “sufficiently simple” (has

low Vapnik-Chervonenkis dimension), then for sufficiently

large 
 any hypothesis � which is correct on all points of 

will with high probability have low error under��

5. Faster Algorithms for Learning DNF

In the previous section we saw how boosting algorithms

can be used to obtain new hard-core set constructions. In

this section we go in the opposite direction and establish

new results in learning theory based on Impagliazzo’s hard-

core set construction. We show that the uniform distribution

boosting algorithmwhich is implicit inIHA can be used sig-

nificantly improve the running time of Jackson’s Harmonic

Sieve algorithm for learning DNF under the uniform distri-

bution using membership queries, which is widely viewed

as one of the most important results in computational learn-

ing theory. We also show how a different modification in-

spired by our analysis in Section 4.3 can improve the run-

ning time even further at the cost of learning using more

complex hypotheses.

Very recently Bshouty, Jackson and Tamon [5] have

given a variant of the Harmonic Sieve algorithm which runs

substantially faster than the original algorithm. Their im-

provement is obtained by speeding up a weak learning al-

gorithm which is a component of the Harmonic Sieve, and

is “orthogonal” to our improvements. By combining our

techniques with their improvements, we obtain the fastest

known algorithm for learning DNF under the uniform dis-

tribution with membership queries.

5.1. The DNF Learning Problem

A disjunctive normal form (DNF) expression is a dis-

junction of terms where each term is a conjunction of

boolean literals. Since every boolean function can be ex-

pressed in this form, the concept class DNF is the class of

all boolean functions over ��� ���. TheDNF-size of a func-
tion � is the minimum number of terms in any DNF ex-

pression for �� Thus, a learning algorithm for the concept

class DNF must be able to learn any boolean function in

time polynomial in the number of terms in its smallest DNF

representation.

In his seminal 1984 paper [27], Valiant posed the ques-

tion of whether there is a strong PAC learning algorithm for

DNF. The lack of progress on this question led researchers

to consider weaker learning models (giving more power to

the learning algorithm or relaxing the criteria for success-

ful learning) in the hope of proving some positive result.

One way of giving more power to the learning algorithm



is by allowing it to make membership queries. A member-

ship query is an oracle query in which the learner specifies

a point � and the membership oracle MEM��� returns the
value ���� of the unknown target function on �� Another
relaxation of the PAC model is to require that the learning

algorithm succeed not for an arbitrary distribution but only

under the uniform distribution.

In a breakthrough result ten years after Valiant’s paper,

Jackson [17] gave an algorithm, the Harmonic Sieve, which

uses membership queries to learn DNF in polynomial time

under the uniform distribution. Although his algorithm runs

in polynomial time, it is not considered to be computation-

ally practical. In this section we show how to substantially

improve the algorithm’s time dependency on the error pa-

rameter �� thus making progress towards a more efficient

implementation.

5.2. An Overview of the Harmonic Sieve

Jackson proves the following theorem:

Theorem 21 [19] The class of DNF formulae over ��� ���

is strongly learnable under the uniform distribution using

membership queries in time �	��������� where � is the

DNF-size of the target function � and � is the accuracy

parameter. The algorithm outputs as its final hypothesis a

majority-of-parity circuit.

At the heart of Jackson’s Harmonic Sieve algorithm is a

procedure WDNF [1] which uses queries to MEM��� as well
as calls to the example oracle EX����� for weakly learning
DNF (see Appendix A for a more detailed description of the

WDNF algorithm). Jackson proves the following:

Lemma 22 [19] For any boolean function � of DNF-size �
over ��� ��� and any distribution �� algorithm WDNF runs

in time �	��������	������ and outputs a parity function

which is a ���	��������-approximator to � under��

Proof Sketch of Theorem 21: The Harmonic Sieve al-

gorithm works by applying Freund’s booster F1 to WDNF.

Since F1 is an 	�
�� 
��������-stage, 	�����-bounded
boosting algorithm, it follows that under the uniform dis-

tribution,���	��� � 	����� for every distribution which
WDNF will receive. Consequently, the Harmonic Sieve al-

gorithm runs in time �	���������. The hypotheses output

by the Harmonic Sieve are majority-of-parity circuits since

each weak hypothesis is a parity circuit and F1 takes the

majority.

5.3. A Faster Version of the Harmonic Sieve

As we have described above, the Harmonic Sieve algo-

rithmworks by boosting under the uniform distribution, and

its running time depends heavily on the boundedness of the

boosting algorithm. The following observation follows di-

rectly from the discussion of IHA in Section 2:

Observation 23 For each measure �� constructed in the

execution of IHA, the distribution���
is ���-bounded.

Since IHA is guaranteed to end after 	�
������ cycles
through the loop, it follows that the IHA algorithm can be

translated directly into a a 	�
������-stage, ���-bounded
boosting algorithm under the uniform distribution. Thus, it

can be used instead of F1 in the top layer of the Harmonic

Sieve. We call this modified algorithm HS
�. Although HS�

requires a factor of ������� more boosting stages than F1,

this is more than made up for by the better boundedness of

HS
�, which results in each execution of WDNF taking at most

�	�������� time steps. Thus we obtain the following:

Theorem 24 There is a membership-query algorithm HS
�

for learning DNF under the uniform distribution which runs

in time �	��������� The algorithm outputs as its final hy-

pothesis a majority-of-parity circuit.

We can achieve an even faster variant of the Harmonic

Sieve, at the price of using more complex hypotheses, by

using the BComb boosting algorithm. As noted in Section

4.2, BComb is an 	�
�� 
��������-stage, 	�
����������-
bounded boosting algorithm. Thus, if we use BComb as our

boosting algorithm, the runinng time of each execution of

WDNF will still be at most �	�������� (here the �	-notation

is hiding a larger polylogarithmic factor). Since we boost

for at most 	��� 
�������� stages, we have the following

theorem:

Theorem 25 There is a membership-query algorithm for

learning DNF formulae under the uniform distribution

which runs in time �	��������� The algorithm outputs as

its final hypothesis a majority-of-majority-of-parity circuit.

The additional circuit complexity comes from the fact

that the hypothesis output by BComb is a depth 2 majority

circuit over its inputs.

5.4. Extensions

Throughout this section we have only discussed using

the Harmonic Sieve to learn DNF formulae under the uni-

form distribution. Jackson [19] generalizes the algorithm to

several other concept classes including TOP (majority-of-

parity circuits) and unions of axis-parallel rectangles over

��� �� � � � � ���� In each case our techniques can be used to

improve the running time of his algorithms.

We also note that in recent work, Bshouty, Jackson and

Tamon [5] have given a new algorithm for learning DNF



under the uniform distribution. The new algorithm differs

from the original Harmonic Sieve in that it uses a faster ver-

sion of the WDNF algorithm. This new version of WDNF

runs in �	��������	������ time steps, where � is the num-

ber of distinct variables which appear in the minimal DNF

representation of the target formula. Bshouty, Jackson and

Tamon run the original 	�����-bounded F1 boosting al-

gorithm for �	���� stages, using the new WDNF algorithm

as the weak learner, to obtain an overall running time of
�	�������� for learning DNF. By applying our techniques

as in Section 5.3 (using the �	�
����������-bounded boost-
ing algorithm BComb ), we can improve the running time of

the algorithm to �	���������
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A. The WDNF Algorithm

The WDNF algorithm takes as input an example oracle

EX������ a membership oracle MEM���� a distribution or-
acle DIST���� and a value Æ � �� A distribution oracle

DIST��� is an oracle which, when queried with a point �
in the domain of �� returns ����� All of the boosting al-

gorithms F1, BFilt , and BComb , as well as the uniform-

distribution boosting algorithm implicit in IHA, construct

their distributions �� in such a way that they can effi-

ciently simulate DIST����� With probability at least � � Æ
the WDNF algorithm outputs a parity function which is a

���	��������-approximator for � under�� where � is the
DNF-size of ��
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