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Abstract

Green and Tao ([GT04]) used the existence of a dense subset indistinguishable from the primes under
certain tests from a certain class to prove the existence of arbitrarily long prime arithmetic progressions.
Tao and Ziegler ([TZ06]) showed some general conditions under which such a model exists. In [RTTV08],
a quantitatively improved characterization was obtained using an argument based on Nisan’s proof
of the Impagliazzo hard-core set theorem ([I95]) from computational complexity. Gowers ([Gow08])
independently obtained a similar improvement.

We show that the existence of dense models can be reduced directly to the improved hardcore distri-
bution results of Holenstein ([H05]). Using Holenstein’s uniform proof of an optimal density hard-core
set theorem, we show that the dense models that one derives have a canonical form, with models being
(sampleable from) functions defined in terms of tests from the original class.

We give several applications, including generalizations of weak regularity lemmas ([FK99, K97,
COCF]). For example, we show that any graph G with ∆n2 edges has a γ-cut-approximator of rank

2poly(1/γ,1/ log(1/∆), whereas direct application of [FK99] gives rank 2O(1/γ2∆2).
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CNS-0716790 and CCF-0832797. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science Foundation.
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1 Introduction

The notion of indistinguishability of two distributions under a class of tests ([Y82, GMR89]) has long been
a fundamental concept in computational complexity, and in particular, for the foundations of cryptography.
Recently, it is also becoming important in other areas of mathematics, in particular for additive combinatorics
and number theory. Green and Tao ([GT04]) used the existence of a dense subset indistinguishable from the
primes under certain tests from a certain class to prove the existence of arbitrarily long prime arithmetic
progressions. Tao and Ziegler ([TZ06]) showed some general conditions under which such a model exists.

In [RTTV08, TTV09], a number of results translating between the two communities are given. For
example, a quantitatively improved characterization was obtained using an argument similar to the non-
constructive linear programming duality proof by Nisan of the hard-core set theorem ([I95]) from com-
putational complexity. Gowers ([Gow08]) independently obtained a similar improvement, also using LP
duality. [RTTV08, TTV09] also show that many of the standard “decomposition” theorems, such as the
weak regularity theorem in graph theory, can be viewed as special cases of the dense model theorem or its
generalizations.

Here, we give a precise connection between the hard-core set theorem and dense model theorem. We
give a direct reduction from a strong form of dense model theorem to the hard-core set theorem ([I95, H05]).
This allows us to convert any proof of the hard-core set theorem into a proof of the dense model theorem.
Combining this reduction with algorithmic proofs of the hardcore set theorem using the boosting technique
from computational learning theory ([I95, KS03, H05, BHK09]), we obtain an algorithmic version of the dense
model theorem which also gives a constructive characterization of the models. ([TTV09] also obtained an
algorithmic version of weak model theorem, but under a stronger assumption about the sets to be modeled.)

We show how to apply this general result to obtain algorithmic combinatorial “decomposition” theorems.
The most important class of such results are versions of the weak regularity lemma ([FK99]) that apply to
sparse graphs. We obtain the main result from [COCF] as a corollary, in a completely modular way. Because
it is general and modular, our new proof of this result can be easily generalized, to think of our graph as a
subgraph of any multigraph. An interesting case of this is to condition on degrees as in [ACOHKRS07]. It
also allows us to apply our decompostion technique recursively, to get a new weak regularity theorem under
much weaker assumptions about the graph.

Our work connects several disparate lines of research:

Computational entropy Consider a distribution on strings, such as descriptions of stock transactions or
sunspot activity. While the distribution might be obviously not completely random, there may be
computational limits to prediction or classification that go beyond the information-theoretic entropy
of the distribution. So the amount of “randomness” as far as efficient algorithms (e.g., small Boolean
circuits) are concerned may be greater than the amount of true randomness inherrent in the distribu-
tion. This issue arises in computational complexity theory and the theory of cryptography, as being
related to pseudo-randomness, the power of randomness in computation, and randomness extraction.

Yao ([Y82]) first discusses the notion of computational entropy and gives a definition based on the
amount of compression possible by feasible algorithms. Later, [HILL99] introduces a different formal-
ization of computational entropy as the maximum Shannon entropy of a distribution indistinguishable
from the given one by efficient algorithms (or small circuits). They use computational entropy as a
tool in constructing cryptographic pseudo-random generators from one-way functions. Computational
entropy has become a useful general conceptual tool for cryptography and the complexity theory of
randomness. For example, [STV01] show how to use computational entropy for hardness amplification
and constructions of pseudo-random generators for derandomization.

[BSW03] characterize distibutions with high pseudo-entropy in terms of a property we call pseudo-
density. Essentially, their result says that any distribution which has no small circuit efficiently wit-
nessing that it is small has high computational entropy, i.e., there is a high-entropy distribution indis-
tinguishable from it to small circuits. This characterization turns out to be basically equivalent to the
Dense Model Theorem. Their proof used a linear programming duality argument similar to the Nisan
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proof of the Harcore Set Theorem. Our constructive version shows that the high entropy distribution
indistinguishable from a high pseudo-density set itself has small circuit complexity.

Additive combinatorics As noted before, the dense model theorem is a key step in the proof of the
existence of arbitrarily large arithmetic progressions in the primes, and generalizations of this result
([GT04, TZ06]). This work has since been improved both quantitatively and qualitatively ([Gow08,
RTTV08, TTV09]). In particular, the original work required the set in question (the primes) to be a
dense subset of a pseudo-random set (the almost primes). For other sets of interest, such a pseudo-
random set might not be obvious or might not exist. In contrast, dense model theorems in terms of
pseudo-density ([RTTV08, BSW03]) work directly from the set to be modelled, by showing that for a
certain class of tests, the expected value of the test on the set is not hugely greater than it is on the
uniform distribution.

Second, in [TTV09], the model for the set has a small description in terms of the same set of tests.
However, they required the set to be dense inside a pseudo-random set, not just pseudo-dense.

We give the first dense model theorem with both of these advantages simultaneously. We assume only
pseudo-density, and give a construction of the model in terms of the same underlying family of tests.
In many cases, we can do so efficiently, with an algorithm that either returns the description of the
model or a test that violates pseduo-density. We call such an algorithm a modeller.

Hardness amplification Hardness amplification is the study of constructions that make a somewhat hard
problem reliably hard on average. The hard-core set theorem is a central tool in hardness amplification,
because it formalizes the intuitive notion of an instance to a somewhat hard problem being “hard”
with some probability and “easy” otherwise. See for example [I95, IW97, STV01, O04, H05]. Here, we
show the hardcore set theorem has applications beyond hardness amplification.

Boosting As observed by Klivans and Servedio ([KS03]), the constructive proofs of the hardcore set theorem
apply the learning theory technique of boosting, and conversely, any boosting algorithm can be used
to prove a version of hardcore set theorem. Boosting has already proved to be an amazingly useful
algorithmic tool, with applications for learning ([S90, FS96a]), repeated playing of zero-sum games
([FS96b]) , and finding efficient approximations to convex optimization problems ([AHK05]). Here, we
add yet another application: converting an approximation algorithm into a modeller. For example,
we use the cut norm approximation algorithm of [AN04] to obtain the algorithmic weak regularity
partitioning algorithm of [COCF]. Only the overall running time depends on the approximation factor,
not the quality of the model, so even very poor approximation algorithms can be used in this general
construction.

Regularity and Decomposition Theorems Many results in combinatorics show that modulo a high-
level structure, the object is close to random in some respect. A classic example is the Szemeredi
Regularity Lemma ([S78]), showing that any graph can be partitioned into a small number of pieces so
that for most pairs of pieces, the density of any subgraphs is very close to the density of the bipartite
graph between the pieces. The Weak Regularity Lemma of Frieze and Kannan ([FK99]) gives a similar
result, with a partition into a smaller number of components, but where the error term is global, rather
than for most pairs of components. However, the additive error term in these theorems swamps the
number of edges in a sparse graph.

Kohayakawa [K97] gives a criterion under which even sparse graphs have regular partitions as in the
Szemeredi regularity lemma [S78]. Coja-Oghlan, Cooper and Frieze [COCF] give a weak regularity
lemma for sparse graphs and an efficient algorithm for finding a corresponding partition. Alon, Coja-
Oghlan, Han, Kang, Rodl, and Schacht (ACHKRS07) modify the strong regularity lemma for sparse
graphs so that nodes are weighted by degree, and also give an efficient version. For all of these results,
the “high-level” structure is the partition, and the density between each pair, and the theorem is
saying that, with a small error term, density of sub-graphs is close to that of random graphs with these
densities giving edge probabilities between the parts.
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We show how the efficient weak regularity lemma for sparse graphs of [COCF] follows directly from
the dense model theorem (and an approximation algorithm of Alon and Naor for the cut norm [AN04],
which is also used in the efficient results above.) We also give a generalization allowing the underlying
probability model to have arbitrary edge weights rather than being uniform or proportional to degree.

We give a general decomposition theorem, showing how to break up any set into a “structured part”
and a “random model”. This is similar in spirit to the General Regularity Lemma of [TTV09], but
we do not see any obvious implications in either direction. We also give a recursive version, that
“telescopically” models increasing portions of the structured part of the set. Applying this to graph
cuts, we get the following quantitative improvement to the weak regularity theorem for graphs:

Theorem 1. For any ∆,Γ, there is a T = 2poly(1/Γ,log 1/∆) so that: Let G be any undirected graph with
∆n2 edges. Then G has an Γ cut-approximator H which is a partition matrix of complexity T . (Here,
a partition matrix of complexity T is one where we can partition the nodes of the graph into T sets, so
that the value of Hu,v just depends on which sets u and v are in.) Furthermore, we can compute H in
polynomial time.

We actually prove a more general version of the above as Corollary 2. Direct application of [FK99]
would give T = 21/(Γ∆)2 so our dependence on ∆ is almost exponentially improved.

1.1 Notation and Definitions

Fix a basic finite universe U and a probability distibution σ on U . (We usually think of U as either the
set of all n bit strings or all positive integers at most N , and σ as the uniform distribution. However, some
of our proofs will require us to apply certain lemmas to non-uniform distributions σ, so we will be more
general here.) A test is a Boolean function on U . (We can also consider more general tests, that map U to
the real interval [0, 1], but the case of real tests follows from that for Boolean tests by standard randomized
rounding techniques.) Let T be a test and σ a distribution on U . We use T [σ] as an abbreviation for
Probx∈σU [T (x) = 1]. A class of tests T is a set of tests that contains the constant tests (always 0 and always
1) and is closed under complementation.

Two distributions ρ1 and ρ2 are ε-indistinguishable for T if ∀T ∈ T , |T [ρ1] − T [ρ2]| < ε. ρ is ε-
pseudorandom for T if it is ε-indistinguishable for T from the uniform distribution on U .

A measure µ is a map from U to the real interval [0, 1], with density d(µ) =
∑

x∈U µ(x)σ(x). A measure
µ of positive density induces the distribution Dµ(x) = µ(x)σ(x)/d(µ). We identify a set S ⊂ U with the
induced measure given by its characteristic function, and hence with the conditional distribution on x given
x ∈ S. Thus, the density of a set S is d(S) =

∑
x∈S σ(x) = Probx∈σU [x ∈ S]. For test T and measure µ, we

define T [µ] = T [Dµ]. In particular, T [S] = Prob[T (x) = 1|x ∈ S], since we identify S with the conditional
distribution given x ∈ S.

If S is a set and µ a measure, we say that µ is an ε-model for S if the induced distribution on S and Dµ

are ε-indistinguishable for T . We are particularly interested in the case when S is of negligible size, and µ
is dense, i.e., when d(S) << d(µ).

Note that if a set S has density d(S), then for any test T , T [U ] = Prob[T (x) = 1] ≥ Prob[x ∈
S]Prob[T (x) = 1|x ∈ S] = d(S)T [S]. Contrapositively, a test T with T [U ] < δT (S) is a “proof” that
d(S) < δ. However, since both T [U ] and T [S] might be very small, random samples might not be enough to
verify this “proof”. To make the certificates easy to verify, we put in an additive error term. We call a test
T an (ε, δ)-distinctive test if T [U ] < δT [S] − ε. (Hence, the inequality T [U ] < δT [S] can be verified using
poly(1/ε) random samples.) A set S has ε-pseudo-density at least δ for T if there are no (ε, δ) distinctive
tests in T : ∀T ∈ T , T [U ] ≥ δT [S]− ε.

The threshold function Thk,t(b1, ...bt) is the Boolean function that is 1 if and only if at least k out of
its t inputs are one. For T a class of tests, let Tt be the class of tests of the form Thk,t′(T1, ..Tt′) where
0 ≤ k ≤ t′ ≤ t and each Ti ∈ T .

The truncation function trunc(x) is a function from R to [0, 1] defined by trunc(x) = 0 if x < 0, x if
0 ≤ x ≤ 1, and 1 if x > 1. tlt(T ) (truncated linear functions over T with size t ) is the class of measures µ on
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U of the following form: µ(x) = trunc((
∑i=t′

i=1 (Ti(x))) where 1 ≤ t′ ≤ t, and each Ti ∈ T . If f is a Boolean
function, the class of tests T ⊕ f is the class of tests of the form T ′(x) = T (x)⊕ f(x), for some T ∈ T . The
class ∨k(T ) is the class of tests that can be written as the logical or of at most k tests in T , and ∧k(T ) the
same for the logical and.

Let f be a Boolean function on U , and let ρ be a distribution on U . f is δ-hard for T on ρ if,
∀T ∈ T , P robx∈ρU [f(x) = T (x)] ≤ 1 − δ. We say that f is ε-hardcore for T on ρ if and only if ∀T ∈
T , P robx∈ρU [f(x) = T (x)] ≤ 1/2 + ε, i.e., if and only if f is 1/2− ε hard.

2 Statements of dense model theorems

The Green-Tao Dense Model Theorem can be paraphrased as follows:

Theorem 2. There is a function t = poly(1/ε, 1/δ) so that the following holds: Let T be a set of tests. Let
S ⊂ R ⊂ U be such that S is δ-dense in R (with base distribution uniform) and DR is ε-pseudo-random for
Tt. Then there is a δ-dense distribution µ that is an O(ε)-model for S with respect to tests in T .

[RTTV08] prove a somewhat simplified version of this theorem:

Theorem 3. There is a function t = poly(1/ε, 1/δ) so that the following holds: Let T be a set of tests. Let
S be a subset of U that has ε-pseudo-density at least δ with respect to Tt. Then there is a δ − O(ε)-dense
measure µ that is an O(ε/δ)-model for S with respect to tests in T .

1

It is trivial to see that the second theorem implies a version of the first. All that is necessary is to show
that if S has density δ within R and DR is ε-pseudo-random, then S has ε-pseudo-density at least δ. But
under these conditions, for any test T , Probx∈U [T (x)] ≥ Probx∈R[T (x)]− ε ≥ δProbx∈S [T (x)]− ε, which is
precisely the requirement for ε-pseudo-density at least δ.

[RTTV08] used a proof modeled after the original hard-core set theorem [I95]. However, they used a final
step very similar to that of a proof of an improved hard-core set theorem from [H05]. Our proof directly
reduces the problem to Holenstein’s hard-core set theorem. There were two proofs in [I95], both improved
in [H05], a non-constructive game theoretic argument and a more constructive incremental argument later
shown to be essentially the same as the concept of boosting in learning theory ([S90, FS96a, KS03]). [RTTV08]
gave only a game theoretic proof, but by giving a direct reduction, we can use any proof of the Holenstein
version of hard-core set theorem. Applying his second, boosting-style, proof, we obtain a more constructive
characterization of the dense model for S:

Theorem 4. There is a function t = poly(1/ε, 1/δ) so that the following holds: Let T be a set of tests. Let
S be a subset of U that has ε-pseudo-density at least δ with respect to Tt. Then there is a δ − O(ε)-dense
distribution µ that is an O(ε/δ)-model for S with respect to tests in T . Moreover, µ ∈ tlt(T ) (i.e., has the
following form: µ(x) = trunc(

∑i=t′

i=1 (gi(x)) where t′ < t, and gi ∈ T for 1 ≤ i ≤ t′.)

We also get an algorithmic version of the theorem:

Theorem 5. Let .1 > ε > ε′ > 0, 1 > δ > 4β > 0 be given real numbers. There is a function t =
poly(1/ε′, 1/δ) so that the following holds: Let T be a set of tests. Let S ⊆ U .

Then there is an algorithm G running in time poly(1/ε, 1/δ) and making at most that many oracle calls
to four oracles A,A′, B, and C as follows:

1The O(ε) slack term in the density can be moved into the error term by averaging the measure µ with the uniform
distribution, for example. However, the O(ε/δ) error term is tight, up to constant factors. Imagine a negligible size set S and
a subset T of size ε/δ|S|, with T being the constants and the characteristic function of T . Tt = T , because every function in
T , and hence in Tt, depends only on membership in T . The only non-trivial test to apply is membership in T , which is almost
0 on U and ε/δ on S (and 0 ≥ δ(ε/δ) − ε. So S is δ-pseudo-dense. However, on any measure of density δ, T has negligible
probability, whereas T (S) has probability ε/δ by construction, so T is a test that ε/δ distinguishes S from any large measure.
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Sampler A produces uniformly distributed samples x ∈ S, and A′ produces uniformly distributed samples
x ∈ U .

Test evaluator B, given x and a description of test T ∈ T , computes T (x).

Approximate best distinguisher C takes as input measures µ1, µ0 ∈ tlt(T ⊕ f) (described by up to t
functions in T each) so that

1. µ0 has density at least β on U

2. µ1 has density at least β on S, and

3. there is an element T ∈ T distinguishing between Dµ0 on U and Dµ1 on S with advantage at least
ε,

and outputs a test T ′ ∈ T distinguishing the two distributions with advantage at least ε′.

Then, with high probability, G either produces a function T ′ ∈ Tt that is an (ε, δ)-distinctive test for S or
a measure µ ∈ tlt(T ) of density at least δ −O(ε) so that S is O(ε/δ)-indistinguishable from Dµ.

3 Hard-core set theorems

In [I95], the concept of a hard-core measure was introduced, and it was shown that every δ-hard function
had a hard-core measure of density δ. Intuitively, a hard-core set theorem splits the instances into the “easy
ones” and the hard-core, where the algorithm can do no better than random guessing. If the algorithm can
compute f on all but a set H that is the “hard-core”, it will also get the answer correct on H half the time,
since more significant rate of failure means that the complement is an algorithm with a more significant rate
of success on H. Thus, the failure overall should be half the density of H, or the hard-core should be of size
2δ, rather than the δ of [I95]. This gap was closed in [H05].

Theorem 6. [H05] There is a function t = poly(1/ε, 1/δ) so that the following holds: Let T be a set of
tests. Let f be a Boolean function on U , and σ a distribution on U . If f is δ-hard for Tt on σ, then there is
a measure µ of density 2δ on σ so that f is ε-hard-core on Dµ.

By using a boosting-style argument, Holenstein also gives a more constructive algorithmic version of
this theorem. Following a similar argument in [I95], but with some clever new twists, Holenstein describes
a process where a set of tests in T evolves. Corresponding to the set of tests, there is a measure. If this
measure has small density, he shows how to compute the function using the set of tests with probability more
than 1− δ, contradicting the hardness assumption. If not, and the measure is also not yet a hard-core, there
is a prediction function in T that predicts f more than 1/2 + ε of the time on the measure. This prediction
function is added to the set. He shows that this process converges within a polynomial number of steps.
While Holenstein stresses the algorithmic nature of this process, (assuming some method for obtaining the
prediction function from the measure), it also has the advantage of having a very simple definition of the
measures in question:

Theorem 7. [H05] There is a function t = poly(1/ε, 1/δ) so that the following holds: Let T be a set of
tests. Let f be a Boolean function on U , and σ a distribution on U . If f is δ-hard for Tt on σ, then there is
a measure µ ∈ tlt(T ⊕ f) of density 2δ on σ so that f is ε-hard-core on Dµ.

In fact, Holenstein gives an algorithmic form of this theorem.

Theorem 8. [H05] Let .1 > ε > ε′ > 0, 1 > δ > 2β > 0 be given real numbers. There is a function
t = poly(1/ε′, 1/δ) so that the following holds: Let T be a set of tests. Let f be a Boolean function on U ,
and σ a distribution on U .

Then there is an algorithm G running in time poly(1/ε, 1/δ and making at most that many oracle calls
to three oracles A,B, and C as follows:
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Labelled sampler A produces samples (x, f(x)) so that x is distributed according to σ.

Test evaluator B, given x and a description of test T ∈ T , computes T (x).

Approximate best predictor C takes as input a measure µ ∈ tlt(T ⊕ f) (described by up to t functions
in T ) so that

1. µ has density at least β, and

2. there is an element T ∈ T predicting f on µ with advantage at least ε,

and outputs a test T ′ ∈ T predicting f on µ with advantage at least ε′.

Then, with high probability, G either produces a function T ′ ∈ Tt predicting f with probability 1− δ or a
measure µ ∈ tlt(T ⊕ f) of density at least 2δ so that f is ε-hard-core on µ.

Combining our reduction with the above, we get the algorithmic dense model theorem (Theorem 5).
In the applications we give, the algorithms A,A′ and B are usually trivial. Algorithm C can either be

trivial (e.g., exhaustive search over T ) or very non-trivial (approximating the cut norm of a matrix ([AN04]).

4 The reduction

Here, we show how to reduce the model-existence theorems to the corresponding hard-core measure theorems.
First, we give a high-level outline. Let S be a set which is (ε, δ)-pseudo-dense for Tt.

We wish to use the hard-core set theorem to obtain a model for S. To do this, we need a somewhat hard
Boolean function f . The obvious choice is to let f be the characteristic function of S, χS . However, the
interesting case is when S is very small, so χS is approximated by 0 with very high probability. To avoid this,
we need to magnify S, by warping the distribution so that we sample from S with some constant probability,
say δ′. We will argue, for the right choice of δ′, a test computes χS with probability 1 − δ′ + ε if and only
if it is (ε, δ) distinctive for the original distribution. Thus, by assumption, the function χS is δ′ hard for
this warped distribution. Thus, it has a hard core measure of density 2δ′. Since the constant functions are
in our class of tests, such a measure must be evenly divided between elements of S and non-elements, a δ′

fraction each. But since all of S has measure δ′ in our new distribution, the part in S must be basically all
of S. The part of the hard-core measure outside S must have density δ′, but out of the 1− δ′ fraction of the
warped distribution outside S, so density δ′/(1− δ′) in the original. So we need δ′/(1− δ′) = δ. Somewhat
miraculously, solving this equation for δ′ also is the exact value required for the first step, transforming
pseudo-density into hardness.

More precisely, let t be as in the Holenstein hard-core set theorems, for δ′ = δ/(1 + δ) and for ε′ = ε/4.
Let S be a set which is (ε, δ)-pseudo-dense for Tt.

Let U ′ = {(1, s)|s ∈ S} ∪ {(0, x)|x ∈ U}. We think of T as a set of tests on U ′ by ignoring the first bit of
the input. Let δ′ = δ/(1 + δ), so that δ = δ′/(1 − δ′). Consider the distribution σ that with probability δ′

uniformly selects from 1× S and with probability 1− δ′ uniformly selects from 0× U . Let f((b, x)) = b be
the bit describing which case we sampled from. We claim that f is (δ′ − ε(1− δ))-hard on σ for Tt.

Otherwise, let g ∈ Tt compute f with probability 1− δ′ + ε(1− δ′) = (1− δ′)(1 + ε). g could compute f
correctly in two ways: x could be sampled from S, and g(x) = 1; or x could be sampled from U , and g(x) = 0.
Since tests in Tt ignore the first input bit, this success probability is δ′g[S]+(1−δ′)(1−g[U ])) =≥ (1−δ′)(1+ε)
Dividing through by 1− δ′, and using δ = δ′/(1− δ′), we obtain: δg[S] + (1− g[U ]) ≥ 1 + ε or equivalently,
g[u] ≤ δg[S]− ε. Thus, g is (ε, δ)- distinctive, contradicting the pseudo-density assumption for S.

Therefore, applying the Holenstein hard-core measure theorem for f , T , and σ, we obtain a measure
µ((b, x)) of density 2δ′ − 2(1 − δ′)ε on which f is εδ′/4 hard-core for T . Let µ1(x) = µ(1, x) for x ∈ S and
similarly µ0(x) = µ(0, x) for x ∈ U . Then d(µ) = δ′d(µ1) + (1− δ′)d(µ0) (where d(µ1) is taken with respect
to the uniform distribution on S, whereas d(µ0) is with respect to the uniform distribution on U).

Also, since constants are in T , and since f((b, x)) = b, |Prob(b,x)∈DµU ′ [b = 1] − 1/2| ≤ ε′. Then
2ε′ ≥ |Prob(b,x)∈DµU ′ [b = 1] − Prob(b,x)∈DµU ′ [b = 0]| = |(δ′d(µ1) − (1 − δ′)d(µ0))/d(µ)|. so |δ′d(µ1) − (1 −
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δ′)d(µ0)| ≤ 2ε′d(µ). Adding the equation above to this inequality , we get 2δ′d(µ1) ≥ d(µ)(1 − 2ε′) ≥
(2δ′ − 2ε(1 − δ′))(1 − 2ε′), so d(µ1) ≥ 1 − ε(1 − δ′)/δ′ = 1 − ε/δ. Similarly, 2(1 − δ′)d(µ0) ≥ d(µ)(1 − 2ε′).
Thus, d(µ0) ≥ ((δ′)/(1− δ′)− ε)(1− 2ε′) = (δ− ε)(1−O(ε)) = δ−O(ε). Therefore, d(µ1) = 1−O(ε/δ) and
d(µ0) = δ −O(ε).

We choose µ0 as our hard-core measure. Since d(µ1) = 1 − O(ε/δ), the statistical distance between
Dµ1 and the uniform distribution on S is at most O(ε/delta). (To see this, we can write Dµ1 as a convex
combination of uniform distributions on sets A of size d(µ1)|S|. Since each such distribution has statistical
distance 2(1 − |A|/|S|) = 2(1 − d(µ1)) = O(ε/δ), the same is true for Dµ1). Let (b, x) be chosen according
to Dµ. For any T ∈ T , 1/2 + ε′ ≥ Prob[T (b, x) = b] = Prob[b = 1]Prob[T ((b, x)) = 1|b = 1] + Prob[b =
0]Prob[T ((b, x)) = 0|b = 0] ≥ (1/2− ε′)T [Dµ1 ] + (1/2− ε′)(1−T [Dµ0 ]) ≥ 1/2− 2ε′ + 1/2(T [Dµ1 ]−T [[Dµ0 ]).
Thus, (T [Dµ1 ]− T [[Dµ0 ]) ≤ 4ε′ = ε. Since T [S]− T [Dµ1 ] ≤ O(ε/δ), we have T [S]− T [Dµ0 ≤ O(ε/δ + ε) =
O(ε/δ). Thus, µ1 is an O(ε/δ model for S as claimed.

If we apply the boosting proof of Holenstein’s theorem, µ has the form trunc(
∑

i gi(b, x)⊕f(b, x)). Since
for µ0 , b = f(b, x) = 0, and each gi is independent of b, µ0 has the form trunc(

∑
i gi(x)) for at most t gi’s

in T .

4.1 Algorithmic version of the reduction

To make the above reduction algorithmic, i.e, to use Theorem 8 to prove Theorem 5, we also need to
specify how to translate one group of parameters and algorithms to the other. In Theorem 5, we are given
.1 > ε > ε′ > 0, 1 > δ > 4β > 0 and algorithms A,A′, B, and C so that:

Sampler A is a probabilistic algorithm that produces uniformly distributed samples x ∈ S, and A′ produces
uniformly distributed samples x ∈ U .

Test evaluator B is an algorithm that given x and a description of test T ∈ T computes T (x).

Approximate best distinguisher C is an algorithm that takes as input measures µ1, µ2 ∈ tlt(T ⊕ f)
(described by up to t functions in T each) so that if µ1 has density at least β on S and µ2 has density
at least β on U , and there is an element T ∈ T distinguishing between Dµ1 on U and Dµ2 on S with
advantage at least ε, then C outputs a test T ′ ∈ T distinguishing the two distributions with advantage
at least ε′.

Let ε2 = 2ε, δ2 = δ + 2ε, ε′2 = ε′/4, and β2 = 2β + ε.
For U ′, σ and f as in the reduction, we’ll define the following algorithms in order to apply Theorem

/refUniformHardcore:

Labelled sampler A, a probabilistic algorithm that produces samples (x, f(x)) so that x is distributed
according to σ.

Test evaluator B an algorithm that given x and a description of test T ∈ T computes T (x).

Approximate best predictor C, an algorithm that takes as input a measure µ ∈ tlt(T ⊕f) (described by
up to t functions in T ) so that if µ has density at least β2, and there is an element T ∈ T predicting
f on µ with advantage at least ε2, then C outputs a test T ′ ∈ T predicting f on µ with advantage at
least ε′2

Define A as follows: Pick b = 1 with probability δ′, and 0 otherwise. If b = 1, use A to produce x ∈U S,
and return ((x, 1), 1), otherwise use A′ to produce x ∈U U and return ((x, 0), 0). (The bit b is both the last
bit of the element of U ′ and the value of the function f).

We can let B = B, since the requirement is identical.
Finally, define C as follows: C is given as input a measure µ of density at least β2, so that there is some

T ∈ T so that Probx∈µU ′ [T (x) = f(x)] ≥ 1/2 + ε2.
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We first check to see if µ is very biased, and if it is, output a constant function as our predictor. Let
γ = |Probx∈DµU ′ [f(x) = 1] − 1/2| be the bias. We can estimate γ closely by generating random samples
using A. If γ ≥ ε′2, we produce the appropriate constant function as our output.

Otherwise, the distribution is approximately balanced between 0’s and 1’s. Let µ0, µ1 ∈ tlt(T ) be the
results of setting the value of f in µ to 0 and 1 respectively.

Then d(µ) = δ′(d(µ1)) + (1 − δ′)d(µ0) ≥ β2. and the difference in probabilities of 1 and 0 is 2|γ| =
|δ′(d(µ1)) − (1 − δ′)d(µ0)|/d(µ) ≤ 2ε′2 = ε. Thus, 2δ′d(µ0) ≥ (1 − ε)d(µ) ≥ β2(1 − ε) ≥ 2β, so d(µ0) ≥ β.
Similarly, 2(1− δ′)d(µ1) ≥ 2β, so d(µ1) ≥ β.

We claim the same test T that is a good predictor for f is also a good distinguisher for µ0 and µ1. For
x ∈µ U ′, 1/2 + 2ε = 1/2 + ε2 ≤ Prob[T (x) = f(x)] = Prob[f(x) = 1]Prob[T (x) = 1|f(x) = 1] + Prob[f(x) =
0]Prob[T (x) = 0|f(x) = 0] = (1/2 + γ)T (µ1) + (1/2− γ)(1− T (µ0)) = 1/2(1 + (T (µ1)− T (µ0)) + γ(T (µ1) +
T (µ0)− 1) ≤ 1/2 + 1/2(T (µ1)− T (µ0)) + ε/2. Thus, T (µ1)− T (µ0) ≥ 3ε > ε.

So µ1 and µ0 are both measure at least β and have a distinguisher of advantage ε. Thus, C on input
µ1, µ0 produces a distinguisher T ′ ∈ T with advantage at least ε′. We can assume without loss of generality
that T ′(µ1) ≥ T ′(µ0) + ε′. We claim T ′ is also a good predictor, working backwards through the above
calculations: Prob[T ′(x) = f(x)] = Prob[f(x) = 1]Prob[T ′(x) = 1|f(x) = 1] + Prob[f(x) = 0]Prob[T ′(x) =
0|f(x) = 0] = (1/2+ γ)T ′(µ1)+ (1/2− γ)(1−T ′(µ0)) = 1/2(1+ (T ′(µ1)−T ′(µ0))+ γ(T (µ1)+T (µ0)− 1) ≥
1/2(1 + ε′)− γ ≥ 1/2 + ε′/2− ε′/4 = 1/2 + ε′/4 = 1/2 + ε′2. So in this case we return T ′.

Lastly, we need to show how to convert the output of the algorithmic hard-core set theorem into the
output for the algorithmic dense model theorem. The algorithmic hard-core set either produces a function
g ∈ Tt that predicts f with probability 1 − δ′ or a measure µ ∈ tlt(T ⊕ f) that is measure at least 2δ′ and
is O(ε/δ) T -hard-core for f . In the first case, we showed that g itself is an (ε, δ) distinctive test. In the
second case, we showed that µ0 , µ conditioned on f = 0, is a density δ − O(ε) measure that is O(ε/δ)
indistinguishable from DS . Note that µ0 can be obtained from µ by substituting 0 for f in each occurence,
and so each function is of the form gi ⊕ 0 = gi ∈ T . Thus, µ1 ∈ tlt(T ) as claimed.

5 Weak regularity lemmas

In this section, we apply the constructive Dense Model Theorem to give an alternate proof of [COCF].
Following [RTTV08, TTV09], we consider the case of the set S being the edges of a graph and T cuts in
this graph. For undirected graph G and two subsets A and B of vertices, let EG(S, T ) be the multiset of
edges with endpoints in both A and B, counting edges between nodes in A ∪B twice (or equivalently, view
each directed edge {u, v} as a pair of directed edges (u, v) and (v, u), and let E(A,B) be the set of directed
edges (u, v) with u ∈ A and v ∈ B.)

For H be a symmetric n × n matrix of non-negative real numbers, let e(H) =
∑

i

∑
j Hi,j be the total

value of entries in H. For A,B ⊆ {1, ..n}, let eH(A,B) =
∑

i∈A

∑
j∈B Hi,j . We say that H is an ε-cut

approximator for G if for every A,B ||EG(A,B)|/|E(G)| − eH(A,B)/e(H)| ≤ ε.
Let A1, ...At be a partition of the vertices of G, and let 0 ≤ γi,j ≤ 1 for each 1 ≤ i ≤ j ≤ t. The partition

matrix for A1, ..At, ~γi,j is the matrix H where Hu,v = γi,j for every u ∈ Ai, v ∈ Aj . Note that H has at most
t distinct rows, and hence is rank at most t.

We can reprove the following theorem of [COCF], which is an algorithmic version of weak regularity for
sparse graphs.

Theorem 9. [COCF] For every δ, ε, there are t, ε′ so that there is a probabilistic polynomial time algorithm
that, given an undirected graph G, with high probability, produces either:

• A cut (A,B) in G with E(A,B) ≥ ((1/δ|A||B|/
(
n
2

)
) + ε′)E(G); or

• A partition A1, ...At and values γi,j ∈ [0, 1], so that the corresponding partition matrix H is an O(ε/δ)-
cut approximator for G and e(H) ≥ δn2.

In our work, like the previous proofs, ε′ is exponentially small and t is exponentially large in poly(1/δ, 1/ε).
However, both cases have an implicit representation that is only polynomially long in these parameters,
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and can be computed in polynomial time in 1/ε, 1/δ. In [COCF], the implicit representation is a linear
combination of rank 1 matrices; in ours, it is the truncation of the same. The proof is in the Appendix,
Section 8.

We can also generalize this theorem easily, to give similar results for sub-graphs of a given graph or
where edges are not weighted uniformly, e.g., where the “a priori” probability of an edge is proportional
to the degrees of its vertices. Strong “degree-weighted” regularity lemmas and algorithmic versions thereof
were proved by Alon, Coja-Oghlan, Han, Kang, Rodl, and Schacht (ACHKRS07). However, we believe that
this is the first time the general “weighted regularity” problem was considered, and the first weak regularity
lemma even for the “degree-weighted” special case.

The weighted version is more complicated to state than to prove. Let W be an n × n symetric matrix
of non-negative integers. We think of W as represnting a Bayesian prior of how likely edges are to be in a
graph with m edges, so think of picking a random multigraph with m edges by sampling m times from the
edges of a multigraph where each edge {u, v} appears Bu,v times. In the unweighted case, W is identically
1, whereas we obtain the degree weighted case by setting Wu,v = dG(u)dG(v), so that we are comparing G
to a random graph where the expected degrees of nodes are proportional to their degrees in G. For matrices
W,H, let W �H be the pointwise product matrix, W ·Hi,j = Wj,jHi,j . We can also let B be the adjacency
matrix of any graph containing G as a subgraph.

Theorem 10. For every δ, ε, there are t, ε′ so that there is a probabilistic polynomial time algorithm that,
given an undirected graph G, with high probability, produces either:

• A cut (A,B) in G with E(S, T ) ≥ ((1/δeW (S, T )/e(W )) + ε′)E(G); or

• A partition S1, ...St and values γi,j ∈ [0, 1], so that for the corresponding partition matrix H, B ·H is
an ε-cut approximator for G and e(W ·H) ≥ δe(W ).

The proof is identical to the previous theorem, except we let U have W [i, j] copies of the edge {i, j}.
Note that all copies are identical for tests in T , so µ and T will not distinguish between these copies.

6 Decomposition theorems

A decomposition theorem says that every object of a certain type can be broken up into a ‘strucured part”
and a ‘random-looking” part. In this section, we use the constructive Dense Model Theorem recursively to
provide some generic decompositions. We divide an arbitrary set S into a part that is contained within a
very small defineable subset of the universe S1 ⊂ U1, and a part S0 that is indistinguishable from a simple
defineable distribution D0 over the rest of the universe U0 = U − U1. Thus, we can view S1, D0 as giving
the “structure” of S, and then view S0 as close to a random set chosen according to D0. We give two
decomposition theorems. The first applies the Dense Model theorem interatively to carve the set into pieces
that “look small” and “look large”; the second applies the first recursively.

Let T be a test. Let U0 = {x ∈ U |T (x) = 0}, U1 = {x ∈ U |T (x) = 1}, S0 = {x ∈ S|T (x) = 0}, and
S1 = {x ∈ S|T (x) = 1}. Let α0 = 1 − T (S) be the probability that T is 0. For D0 a distribution on U0,
let D(T, α0, D0) be the following distribution on U : With probability α0, pick x ∈ U0 according to D0.
Otherwise, pick x ∈ S1 uniformly.

Theorem 11. Let S ⊂ U and let T be any class of tests on U . For any ε, δ, there is a t = poly(1/ε, 1/δ),
a test T ∈ ∨O(ε/δ)Tt and a measure µ0 ∈ tlt(T ) on U0 so that: T (U) < δT (S), and D(T, α0, Dµ0) is O(ε/δ)
indistinguishable from US.

Moreover, assuming the algorithms in Theorem /refUniformDenseModel can be extended to subsets
defined by tests in T , T and µ0 can be found efficiently.

The Proof is in the Appendix, Section 9.
Let Dt(T , U) be the class of distributions on U that can be computed from at most t tests in T , i.e.,

D(x) is some function of T1(x), ...Tt(x).
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Theorem 12. Let S ⊂ U and let T be any class of tests on U . For any ε, δ and integer l, there is a t =
poly(1/ε, 1/δ), a test T ∈ ∧l(∨O(ε/δ)Tt) and a distribution D0 ∈ DO(tl)(T , U) on U0 so that: T (U) ≤ δlT (S),
and D(T, α0, D0) is O(lε/δ) indistinguishable from US.

Moreover, assuming the algorithms in Theorem /refUniformDenseModel can be extended to subsets
defined by tests in T , T and µ0 can be found efficiently.

The proof is in the Appendix, Section 9.
The following shows that we can have a simple model, if not a dense model, of even sets with very small

pseudo-densities:

Corollary 1. There exists a value of t = poly(1/γ, 1/(log ∆)) so that if S has pseudo-density (γ∆/2,∆) to
∧log ∆+1(∨t(Tt))) , then there is a distribution D in Dt(T , U) so that D and US are indistinguishable within
O(γ) to T .

Proof: Let δ = 1/2, l = log(1/∆) + 1, andε = γ/l. Let Tl and Dl be as in the previous theorem. Then
by pseudo-density, ∆Tl[S] − γ∆/2 ≤ Tl[U ] ≤ 2−lTl[S] = ∆/2Tl[S]. Therefore, αl = Tl[S] ≤ γ. Thus,
D(Tl, α,Dl) and Dl are statistically within γ of each other, and D(Tl, α,Dl) is indistinguishable within
O(lε) = γ from US .

We get as a special case the following smooth tradeoff between the quality and complexity of cut ap-
proximations via partitions for moderately pseudo-dense graphs. We believe this is new even for moderately
dense graphs.

Corollary 2. For any ∆,Γ, there are T = 2poly(1/Γ,log 1/∆) and γ = Γ∆/2T so that: Let G be any graph with
pseudo-density (γ, ∆) with respect to cuts. Then G has an O(Γ) cut-approximator H which is a partition
matrix of complexity T . Furthermore, we can compute H in polynomial time.

Proof. This is the special case of the above corollary. As before, because we can decompose any Boolean
predicate of t cuts into T = 8t complete bipartite graphs, being (γ, ∆) pseudo-dense with respect to cuts
means G is (γT = Γ∆/2,∆) pseudo-dense against Boolean combinations of t cuts. Then the previous
corollary gives us a distribution D defined in terms of t cuts which is O(Γ) indistinguishable to UE(G) by
cuts. Then D can be written as a partition matrix of complexity T , by expanding the basic cuts into a
partition.

7 Conclusions

The main question this work raises is whether there are any applications of the framework in the field where
dense model theorems originated, additive number theory. Are there sets where it is easy to bound the
pseudo-density, but hard to define a pseudo-random set that it is a large subset of?
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8 Appendix: Proof of weak regularity lemma

Here we prove Theorem 9.

Proof. To prove this result, let U be the set of all undirected edges between pairs of distinct vertices in
V , and let S be the set of edges in the graph G. For A,B ⊂ V , with A ∩ B = ∅, let TA,B({u, v}) = 1 if
{u, v} ∈ E(A,B) and 0 otherwise. Let T be the set of such tests TA,B .

To get an algorithmic hard core therorem, we need Sampling, Evaluation, and Approximate Distinguish-
ing algorithms. The first two are trivial, produce a random edge of G, produce a random edge in U , and
tell whether a given edge e is in E(A,B). The Approximate Distinguishing algorithm is basically given to
us by [AN04], who give a constant factor approximation algorithm for the cut norm of a matrix, where for
n×n matrix M , CutNorm(M) = maxA⊂[n],B⊂[n]|

∑
i∈A,j∈B Mi,j | Their algorithm returns a pair A,B with

sum at least a constant fraction of CutNorm(M), in polynomial time in M . Given measures µ1 on S, and
µ0 on U , we can explicitly construct the distributions Dµ1 and Dµ0 and define symetric real-valued matrix
M by Mu,v = Dµ1({u, v}) −Dµ0({u, v}). For cut (A,B), the distinguishing probability for TA,B is exactly∑

u∈A,v∈B Mu,v. So if there is a test with distinguishing probability ε, the Alon Naor algorithm returns a
pair (A1, B1) with sum Ω(ε).

The one complication is that A1 and B1 may not be disjoint. If not, we can break the sum into a constant
number of pieces, each between two of A1 − B1, A1 ∩ B1 or B1 − A1. One of these pieces has sum Ω(ε).
All of these involve disjoint sets, except between A1 ∩ B1 and itself. If this last sum is the largest, we can
greedily partition this intersection so that we get at least half the sum crossing the partition. So in the end,
we get disjoint sets A2, B2 whose cut has at least an Ω(ε) distinguishing probability.

Using these algorithms in Theorem 5, for t = poly(1/ε, 1/δ), we compute either a test T ∈ Taut

with T [U ] ≤ δT [S] − ε, or a measure µ ∈ tlt(T ) of density at least δ and where US and Dµ are O(ε/δ)
indistinguishable for T .

In the first case, we have a distinctive test in Tt, but we want one in T itself. However, T (e) only
depends on whether e is in t cuts E(Ai, Bi). Partition the nodes up into 4t sets C1, ...C4t , according to
which of the Ai and Bi they are members of. T is constant on the set of edges between two groups in
this partition, so there is a symetric relation R on 1, , ..4t so that T ({u, v}) = R(i, j) if u ∈ Ci, v ∈ Cj .
Then we can write both T [U ] and T [S] as the sum over i, j with R(i, j) = 1 of the probability of an
edge falling in the corresponding cut. Since T [U ] ≤ δT [S] − ε, there must be such a cut E[Ci, Cj)] with
Probe∈U [e ∈ E(Ci, Cj)] ≤ δProbe∈S [e ∈ E(Ci, Cj)] − ε′, where ε′ is ε divided by the number of such pairs,
and in particular, ε′ ≥ ε/8t. Since the probability that a random edge in U is in E(Ci, Cj) is |Ci||Cj |/

(
n
2

)
and that for S is E(G) ∩ E(Ci, Cj)/|E|, we can output Ci, Cj and satisfy the first clause of the statement
for the algorithm.

In the second case, µ also depends on t cuts. We can similarly partition the vertices into 4t subsets,
where µ is constant on the edges between each pair of subsets. Thus, the matrix H can be just the value
of µ itself. The condition that µ is O(ε/δ) indistinguishable for T is the same as H being an O(ε/δ) cut
approximator for G.

9 Proofs of decomposition theorems

Here, we prove Theorems 13 and 14. We’ll also restate the theorems.

Theorem 13. Let S ⊂ U and let T be any class of tests on U . For any ε, δ, there is a t = poly(1/ε, 1/δ),
a test T ∈ ∨O(ε/δ)Tt and a measure µ0 ∈ tlt(T ) on U0 so that: T (U) < δT (S), and D(T, α0, Dµ0) is O(ε/δ)
indistinguishable from US.

Moreover, assuming the algorithms in Theorem /refUniformDenseModel can be extended to subsets
defined by tests in T , T and µ0 can be found efficiently.

Proof. Initially, let T = 0, so S0 = S, U0 = U . Repeatedly apply the dense model theorem to S0, U0 with
δ′ = δα0. If α0 < 10ε/δ, we halt and output T and any measure, say identically 1. Otherwise, we apply
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the dense model theorem to either get a distinctive test for S0 inside U0 or a model for S0. If in the i’th
iteration, we get a test Ti ∈ Taut with Ti[U0] ≤ δ/α0Ti[S0]− ε, we repace T by T ∨ Ti. If we instead get a
measure µ0 ∈ Taut on U0 that is O(ε/δα0) indistinguishable from US0 , we stop and output T, µ0.

We maintain the invariant that T (U) ≤ δT (S). It is true initially, since both sides are 0. In the i’th
iteration, Ti is (ε, δα0) distinctive within S0, so (T∨Ti)[U ] = T [U ]+(Ti∧¬T )[U ] = T [U ]+(Ti[U0](1−T [U ])) ≤
T [U ] + Ti[U0] ≤ δT [S] + α0δTi[S0] = δ(T [S] + (1− T [S])Ti[S0]) = δ(T [S] + (Ti ∧ ¬T )[S]) = δ(T ∨ Ti)[S].

Also, since 0 ≤ Ti[U0] ≤ α0δTi[S0] − ε, Ti[S0] ≥ ε/(α0δ), and (Ti ∧ ¬T )[S] ≥ ε/δ. So each iteration α0

decreases by at least ε/δ, so there are at most δ/ε iterations.
If we terminate because α0 is O(ε/δ), both US and DT,α0,µ are O(ε/δ) close to US1 , since with probability

1− alpha0, each samples uniformly from S1. So they are O(ε/δ) close to each other, statistically.
Otherwise, we find a measure µ0 so that Dµ0 is O(ε/(δα0))-indistinguishable from US0 by T . Since both

D(T, α0, Dµ0) and US sample uniformly from S1 with probability 1− α0, any distinguishing probability for
a test comes from the α0 probability side conditioned on which the two distributions sample from US0 and
Dµ0 respectively. Thus, DS and DT,α0,µ0 are O(ε/δ) indistinguishable.

Let Dt(T , U) be the class of distributions on U that can be computed from at most t tests in T , i.e.,
D(x) is some function of T1(x), ...Tt(x).

Theorem 14. Let S ⊂ U and let T be any class of tests on U . For any ε, δ and integer l, there is a t =
poly(1/ε, 1/δ), a test T ∈ ∧l(∨O(ε/δ)Tt) and a distribution D0 ∈ DO(tl)(T , U) on U0 so that: T (U) ≤ δlT (S),
and D(T, α0, D0) is O(lε/δ) indistinguishable from US.

Moreover, assuming the algorithms in Theorem /refUniformDenseModel can be extended to subsets
defined by tests in T , T and µ0 can be found efficiently.

Proof. By induction on l. The case l = 1 follows directly from Theorem 13. For l > 1, by induction, we
have:

1. a test Tl−1 ∈ ∧l−1(∨O(ε/δ)Tt), where Tl−1(U) ≤ δl−1Tl−1(S) .(Tl−1 splits S and U into S0, S1, U0, U1

by the value of Tl−1(x))

2. αl−1 = 1− Tl−1(S).

3. and a distribution Dl−1 ∈ DO(t(l−1))(T , U0)

so that D(Tl−1, αl−1, Dl−1) is O((l − 1)ε/δ) indistinguishable from US by tests in T .
Apply Theorem 13 to S1 with universe U1 to get T ′ ∈ ∨O(ε/δ(Tt), and µ′ ∈ tlt(T ) so that T ′[U1] ≤ δT ′[S1]

and for D′ = Dµ′ and α′ = 1− T ′[S1], US1 is O(ε/δ) indistinguishable from D(T ′, α′, D′) (as a distribution
on U1). Let Tl = T ′∧Tl−1. and from D′ otherwise. Finally, let αl = 1− (T ′∧Tl−1)[S] = (¬T ′∨¬Tl−1)[S] =
(1−Tl−1[S])+(Tl−1[S])(1−T ′[S1]) = αl−1+(1−αl−1)α′. Let Dl sample from Dl−1 with probability αl−1/αl

and from D′ otherwise.
Then D(Tl, αl, Dl) and D(Tl−1, αl−1, Dl−1) both sample from Dl−1 with probability αl−1. Otherwise

the first samples from D(T ′, α′, D′) and the other from US1 . Since these last two distributions are O(ε/δ)
indistinguishable by T , the preceding two distributions are also indistinguishable by the same amount. Since
D(Tl−1, αl−1, Dl) is O(ε/δ(l− 1)) indistinguishable from US , D(Tl, αl, Dl) is O(lε/δ) indistinguishable from
US .

Tl[U ] = T ′[U1]Tl−1[U ] ≤ δT ′[S1]δl−1Tl−1[S] = δlTl[S].
Tl has one more conjunct than Tl−1, and Dl is defined in terms of T ′, Dl−1 and µ′, so involves only

poly(1/ε, 1/δ) more tests in T than Dl−1.

10 Appendix : Other examples of the general framework

In this appendix, we give several simple, direct applications of the Dense Model Theorem to both combi-
natorial and complexity-theoretic domains. The first two examples are basically “toy” problems, artificial

14



demonstrations of the general technique, but ones that seem interesting and potentially useful to us. The
third makes the characterization of computational entropy in [BSW03] more constructive.

10.1 Juntas

A d-junta is a Boolean function that depends on at most d of its inputs. Let Jd,n be the class of d-juntas on
n Boolean variables. Note there are at most 22d

nd such juntas, and we can describe an element explicitly
as a 2d bit truth table and the set of variables that the junta depends on. Assume S ⊆ {0, 1}n is given as a
sampling procedure generating uniform elements of S. Let T = Jd,n and U = {0, 1}n. We have a sampling
algorithm for U , and one for S is assumed. Given a description of a junta of the above form, to evaluate it is
simple, finding the appropriate bits and looking up the value on the table. Finally, if d is constant, we can find
an approximate best distinguisher between measures µ0, µ1 of measure at least β in O(ndpoly(1/ε, 1/β) time
through exhaustive search. For each of O(nd) juntas, approximate the distinguishing probability to within
say ε/4 by generating poly(1/ε) samples from Dµ1 and Dµ0 . Each sample requires expected time O(1/β),
because uniform samples from S or U are accepted with probability d(µ1), d(µ0) respectively. (We can save
samples by using the same O(log |Jn,d|/ε2) = O((2d + d log n)/ε2) samples to estimate all probabilities.)
Return the junta with the largest estimated distinguishing probability.

Therefore, from Theorem 5, for t = poly(1/ε, 1/δ), we have an O(ndpoly(1/ε, 1/δ)) time algorithm that,
given such a set S, either returns a (δ, ε)-distinctive T ∈ Tt for S or a δ − O(ε) dense measure µ ∈ tlt(T )
that is an O(ε/δ)-model for S.

Note that Tt ⊂ Jdt,n, so in the first case we find a constant size junta that is distinctive for S. Also
functions in tlt(T ) only depend on td variables. For a set of variables B, let UB represent the uniform
distribution on {0, 1}B . In the second case, there is a set of variables A of size td and a probability distribution
on assignments to A, DA, so that µ = DA × Un−A. In particular, we get:

Theorem 15. For every fixed positive integer d and every fixed 0 < ε < δ < .1, there is an integer k
so that: For every S ⊆ {0, 1}n either there is an (δ, ε)-distinctive k-junta T ′ for S or there is a set of
variables A of size at most k so that for every d-junta T depending on a set of variables B, B ∩ A = ∅,
|T (S) − T (Un)| ≤ O(ε/δ). Moreover, we can find either T ′ or A in O(nd) time given O(log n) uniform
samples from S.

Note that for this theorem, the form of the model, being determined by a small number of tests from T ,
was more important than the density. Perhaps there is a direct argument not using dense model theorems.

10.2 Polynomials

Let U = {0, 1}n, and let S ⊆ U be given by a sampling oracle. Let T be the closure under negations of the
set of products of at most d variables over the real numbers. Let δ = 1/nd and ε = 1/Wn3d.

As before, T has O(nd) elements, so we can approximate the best distinguisher by exhaustive search in
O(nd) time. Applying Theorem 5, for t = poly(1/ε, 1/δ) = O(WnO(d)), we have an O(nO(d)) time algorithm
that, given such a set S, either returns a (δ, ε)-distinctive T ∈ Tt for S or a δ−O(ε) dense measure µ ∈ tlt(T )
that is an O(ε/δ)-model for S.

Note that tests in Tt are signs of polynomials with degree d and integer-valued co-efficients at most
t, and measures in tlt are truncations of such polynomials, normalized by dividing by the sum of the co-
efficients. Thus, we either compute a polynomial of degree d whose sign is O(δ, ε) distinctive for S or a
degree d polynomial q(x1, ...xn) so that for every monomial of degree at most d, m, (letting q[R] represent
the expectation of function q on subset R), |m[S] − trunc(q) ∗m[U ]/trunc(q)[U ]| ≤ O(ε/δ) = O(1/Wn2d).
Let p be any polynomial of degree d with co-efficients bounded by W in absolute value. Adding up all the
error bounds for each co-efficient, we have |p(S) − trunc(q) ∗ p[U ]/α| ≤ O(1/nd). Thus, we can use q to
approximate the expected value of any degree d polynomial with small co-efficeints on S.

We summarize this as:

15



Theorem 16. For every fixed positive integer d, and every W > 0, for every S ⊆ {0, 1}n, either there is a
degree d polynomial p so that sign(p) is (1/nd, 1/Wn3d)-distinctive for S or there is a degree d polynomial
q and constant α = trunc(q)[U ] > 1/nd so that |p(S) − trunc(q) ∗ p[U ]/α| ≤ O(1/nd) for every degree d
polynomial p with coefficients of absolute value at most W . Moreover, we can compute one of these two
polynomials in time nO(d) given a sampling procedure for S.

10.3 Characterization of computational entropy

For this subsection, let the universe U be {0, 1}n,and the family of tests T as Boolean circuits of size s on
n inputs. [BSW03] proved the following:

Theorem 17. [BSW03] Let S ⊂ U be (ε, δ) pseudo-dense for circuits of size O(spoly(1/ε), 1/δ)). Then
there is a measure µ on U of density δ so that US and Dµ are O(ε/δ) -indistinguishable to circuits of size s.

This can be rephrased as saying that the sets with n−O(1) computational min-entropy are exactly those
with constant pseudo-density.

We get the following refinements:

Theorem 18. Let S ⊂ U be (ε, δ) pseudo-dense for circuits of size O(spoly(1/ε), 1/δ)). Then there is a set
H of cardinality O(δ2n) so that US and UH are O(ε/δ) -indistinguishable to circuits of size s. Moreover, H
is recognizable by a circuit of size O(s log snpoly(1/ε, 1/δ)).

The proof follows directly from the constructive (but not algorithmic) Dense Model Theorem (Theorem
4). For T the set of functions computable by size s circuits, and t the polynomial in the statement of the
theorem, functions in Ttandtlt(T ) are both computable by size O(st) circuits. Therefore, S is pseudo-dense
for Tt, so we construct the desired measure µ ∈ tlt(T ). To convert µ to a set H recognized by a small circuit,
let h be chosen from an O(s log s/ε2)-wise independent family of functions from {0, 1}n to 0, 1/q, 2/q, ...1 for a
large value of q. Let H = {x|h(x) ≤ µ(x)}. Standard probability estimates show that H is indistinguishable
from Dµ with high probability, and that d(H) is close to δ with high probability. Such hash functions can
be described and computed in size O(s log sn/ε2).
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