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1 Expanders and Extractors Workshop (Jan 30–Feb 3)

Open Problems presented at the Simons Workshop on Expanders and Extractors.

Compiled by Noga Alon.

1.1 Partial Steiner systems of large girth, Nati Linial

Let us first recall that the girth of a graph 𝐺 is the least integer 𝑔 such that there is a set of 𝑔 vertices in 𝐺 that spans at
least 𝑔 edges. We seek an analogous notion for 3-uniform hypergraphs. In fact we only deal with linear hypergraphs
𝐻 where every two hyperedges share at most one vertex. As defined by Erdős, the girth of 𝐻 is the smallest integer



𝑔 ≥ 4 such that there is a set of 𝑔 vertices in 𝐻 that spans at least 𝑔 − 2 hyperedges. He conjectured that there exist
Steiner Triple Systems with arbitrarily high girth, but despite considerable attempts over the years, the state of our
knowledge concerning this problem is quite bad. I therefore formulate a variant that may be more accessible:

Question: Does there exist 𝑐 > 0 and 𝑛-vertex 3-uniform hypergraphs with at least 𝑐𝑛2 hyperedges and arbitrarily
high girth?

1.2 Cliques in near Ramanujan Graphs, Noga Alon

An (𝑛, 𝑑, 𝜆)-graph is a 𝑑-regular graph on 𝑛 vertices so that all eigenvalues but the top one are in absolute value at
most 𝜆. Let 𝐺 be an (𝑛, 𝑑, 100

√
𝑑)-graph. It is known that:

1. There is a constant 𝑐 > 0 so that if 𝑑 ≥ 𝑐𝑛2/3 then 𝐺 contains a triangle.

2. The statement in (1) is tight up to the constant 𝑐.

3. There is a constant 𝑐 > 0 so that if 𝑑 ≥ 𝑐𝑛4/5 then 𝐺 contains a copy of 𝐾4.

Open: Is (3) tight up to the value of 𝑐? That is, is there an (𝑛, 𝑑, 100
√
𝑑)-graph containing no 𝐾4, where 𝑑 = Ω(𝑛4/5)?

It is not even known whether or not there is such a graph with 𝑛2/3 = 𝑜(𝑑).

1.3 On the extractable entropy from zero-fixing sources, Gil Cohen

Let 𝑛 ≥ 𝑘 ≥ 0 be integers. An 𝑛-bit random variable 𝑋 is called a 𝑘-zero-fixing source if there exists a subset of
indices 𝑅 ⊆ [𝑛] such that the marginal of 𝑋 when projected to 𝑅 is uniformly distributed, and the remaining bits
of 𝑋 are fixed to zero. The parameter 𝑘 is called the entropy of 𝑋 . Let 𝑚 = 𝑚(𝑛, 𝑘) be the largest integer for
which there exists a function Ext𝑘 : {0, 1}𝑛 → {0, 1}𝑚 with the following property: for any 𝑘-zero-fixing source
𝑋 , Ext𝑘(𝑋) is within statistical distance 1/5 from uniform (here 1/5 is an arbitrary choice of a small constant.) We
stress that Ext𝑘 does not get the description of the source 𝑋 (namely, the set 𝑅) but rather a single sample from 𝑋 .
Such a function Ext𝑘 is called an extractor for 𝑘-zero-fixing sources. We would like to have a better understanding of
the function 𝑚(𝑛, 𝑘) that, informally speaking, captures the amount of extractable entropy from zero-fixing sources.
Clearly, 𝑚(𝑛, 𝑘) ≤ 𝑘. By a straightforward counting argument, for any 𝑘 > log2 log 𝑛 + log2 log log 𝑛 + Ω(1),
𝑚(𝑛, 𝑘) = 𝑘 −𝑂(1). That is, when the entropy 𝑘 is high enough, one can extract essentially all the entropy from the
source. What about smaller entropies? For any 𝑘, 𝑚(𝑛, 𝑘) ≥ 0.5 log2 𝑘 − 𝑂(1) as can be seen by considering the
function that takes the Hamming weight of the input 𝑋 modulo Θ(

√
𝑘) [KZ06][RV13]. That is to say, a logarithmic

amount of entropy is always extractable. Interestingly, this simple function is optimal for small enough 𝑘. Put formally,
𝑚(𝑛, (log* 𝑛)2/3) ≤ 0.5 log2 𝑘 + 𝑂(1) [CS15]. The natural open problem is to understand the behavior of 𝑚(𝑛, 𝑘)
and close the gap between 𝑘 = Ω(log log 𝑛) and 𝑘 = 𝑂((log* 𝑛)2/3). In particular, it is not clear if 𝑚(𝑛, 𝑘) has a
threshold behavior, namely, if there exists a function 𝜏(𝑛) such that for 𝑘 = 𝜔(𝜏(𝑛)), 𝑚(𝑛, 𝑘) = 𝑘 − 𝑂(1) whereas
for 𝑘 = 𝑜(𝜏(𝑛)), 𝑚(𝑛, 𝑘) ≤ 0.5 log2 𝑘 + 𝑂(1).

1.4 Beating the expander mixing lemma for small sets, David Zuckerman

The expander mixing lemma asserts that in a 𝑑-regular graph 𝐺 on 𝑛 nodes, for sets 𝑆 and 𝑇 of size 𝑘, we have

|𝑒(𝑆, 𝑇 ) − 𝑑𝑘2/𝑛| < 𝜆𝑘,

where 𝜆 = max(𝜆2,−𝜆𝑛) is the largest nontrivial eigenvalue in absolute value. Even for optimal 𝜆 = 𝑂(
√
𝑑), this is

useless when 𝑘 < 𝑐
√
𝑛. On the other hand, when 𝑑 > (𝑛/𝑘) log(𝑛/𝑘), most 𝑑-regular graphs achieve an upper bound

of 𝑂(𝑘
√︀

(𝑑𝑘/𝑛) log(𝑛/𝑘)). This is better than the expander mixing lemma for 𝑘 = 𝑜(𝑛).

The problem is to give an upper bound 𝑓(𝐺, 𝑘) that is better than 𝜆𝑘 for some interesting graphs or for most or even
many graphs. For dense graphs, this corresponds to two-source extractors. Bounds on line-point incidence graphs are
also known. It would be extremely interesting to have a general method.



1.5 Spectral radius problem for free groups, Emmanuel Breuillard

If 𝜇 is a probability measure on a non-abelian free group 𝐹 , let 𝜎(𝜇) := ‖𝑇𝜇‖ be the norm of the convolution operator
on ℓ2(𝐹 )

𝑇𝜇 : 𝑓 ↦→ 𝜇 * 𝑓,

where 𝜇 * 𝑓(𝑥) =
∑︀

𝑔∈𝐺 𝑓(𝑔−1𝑥)𝜇(𝑥).

Is it true that for every 𝜖 > 0 there is 𝛿 > 0 such that for all probability measures 𝜇 on 𝐹 , the condition 𝜎(𝜇) > 𝜖
implies that there is a coset 𝑥𝐻 of a cyclic subgroup 𝐻 of 𝐹 such that 𝜇(𝑥𝐻) > 𝛿?

1.6 Explicit Coding Power Series, Anup Rao

We are interested in giving an explicit description of a formal power-series over a finite field 𝐹 with some nice
properties. The motivation comes from several applications related to coding.

We say that a power series 𝑃 (𝑋) = 𝑝0 + 𝑝1𝑋 + . . . is 𝜖-sparse if there is a finite 𝑘 such that of the first 𝑘 coefficients
of 𝑃 (𝑋), at most 𝜖𝑘 of them are non-zero.

Definition: 𝑃 (𝑋) is an 𝜖-coding power series if for every polynomial 𝑔(𝑋) with 0/1 coefficients, the power series
(1 + 𝑋𝑔(𝑋))𝑃 (𝑋) is not 𝜖-sparse.

Fact: For every 𝜖 > 0, there is a finite field 𝐹 for which a random power series 𝑃 (𝑋) will be a coding power series
with positive probability.

Open Problem: Give an explicit example of a coding power-series.

2 Cryptography using Weak Sources of Randomness (Feb 6–Feb 9)

Open Problems presented by Yevgeniy Dodis at the Simons Working Group on Cryptography using Weak Sources of
Randomness.

Prepared by Siyao Guo.

2.1 Interactive proofs with imperfect randomness.

The class of languages which admit deterministic interactive proofs is NP. The class of languages (IP) which admit
probabilistic interactive proofs is PSPACE.

Question: Is IP-weak = IP? Can we simulate probabilistic interactive proofs using imperfect random sources?

Dodis et al. [DOPS04] (pdf) showed that block sources are sufficient to similate interactive proofs.

2.2 Extraction from limited “bit-coin source”

source parameterized by 𝛾, 𝑛 and 𝑏.

repeat the following steps until 𝑛 𝑏-bit blocks output:

1. sample random 𝑏-bit 𝑋

2. sample a coin which is 1 with probability 1 − 𝛾.

3. if coin=0, output 𝑋 as next block and go to step 1.

https://cs.nyu.edu/~dodis/ps/1-source.pdf


4. if coin=1, ask attacker if he wants to block 𝑋 or not

5. if block, don’t output anything and go to step 1, else output 𝑋 and go to step 1.

Goal: extract (for now 1) 𝜀-unbiased bit from such 𝑋1 . . . 𝑋𝑛

Known: impossible if 𝐴 can block unbounded number of times.

So let’s limit number of blocked times by 𝑡

Question 1: 𝑏 = 1. given 𝑡, 𝜀, 𝛾, what is smallest 𝑛 for which possible?

Question 2: given 𝑡, 𝜀, 𝛾, what is smallest alphabet 𝑏 for which can set 𝑛 = 𝑡 + 1.

—

Consider the case of (information-theoretic) private-key encryption where parties wish to encrypt a 𝑏-bit value using
shared secret key sampled from an imperfect random source 𝑋 over 𝑛 bits. Bosley and Dodis [BD07] (pdf) showed
that if such scheme is secure, then one can deterministically extract 𝑏 − log 𝑛 bits from 𝑋 . Hence, to a large extent,
true randomness is inherent for encryption.

2.3 Separation between encryption and extraction.

They conjecture that extracting 𝑏 bits from 𝑋 is impossible.

For any extractor Ext : {0, 1}𝑛 ×
(︀
{0, 1}poly(𝑛)

)︀𝐵 → {0, 1}, there exists distribution 𝑋 over {0, 1}𝑛 and Enc :

{0, 1}𝑛 × [𝐵] → {0, 1}poly(𝑛) such that

• for any 𝑚0 ̸= 𝑚1, ∆(Enc(𝑋,𝑚0),Enc(𝑋,𝑚1)) = 0,

• ∆(Ext(𝑋,Enc(𝑋, 1), . . . ,Enc(𝑋,𝐵)), 𝑈1) > Ω(1)

where 𝑈1 is the uniform distribution over {0, 1}, 𝐵 = 2𝑏 and ∆ stands for statistical distance.

Bosley and Dodis [BD07] showed that above conjecture is true for 𝑏 ≤ log 𝑛− log log 𝑛.

2.4 Is true randomness inherent for sharing schemes?

A randomize function share(𝑚,𝑋) → (𝐿,𝑅) (which takes a message 𝑚 over 𝑏 bits as input and uses 𝑋 as the random
source) is a 2-out-of-2 secret sharing scheme if

• (Reconstruction) there exists an algorithm Rec such that

for every 𝑚, Pr[Rec(𝐿,𝑅) = 𝑚] = 1,

• (Privacy) for any 𝑚′ ̸= 𝑚, ∆(𝐿(𝑚), 𝐿(𝑚′)) = 0 and ∆(𝑅(𝑚), 𝑅(𝑚′)) = 0.

Question: If share(𝑚,𝑋) is a 2-out-of-2 secret sharing scheme, can we deterministically extract random bits from
𝑋?

More background in secret sharing can be found in the survey by Beimel [Bei11] (pdf).

2.5 Beating RT-bound using computational extractor.

Radhakrishnan and Ta-Shma [RTaShma97] (pdf) showed that any seeded extractor with error 𝜀 suffers from 2 log 1/𝜀
entropy loss (entropy loss is the amount of entropy in source and seed substracting output length). Motivated by
bypassing this limitation, one approach is to consider computational extractor, whose output is only required to be
computationally indistinguishable from uniformly random.

https://www.iacr.org/archive/tcc2007/43920001/43920001.pdf
https://www.cs.bgu.ac.il/~beimel/Papers/Survey.pdf
https://pdfs.semanticscholar.org/0385/3893e657cb69e51b603d3f1cc1d5c47be5a5.pdf


Dachman-Soled et al. [DachmanSoledGKM12] (pdf), together with the result of Dodis et al. [DPW14] (pdf) showed
that any efficient computational extractor beating RT-bound implies one-way function.

Question: Can we construct an efficient computational extractor beating RT-bound based on one-way functions?

Krawczyk [Kra10] (pdf) used extract-then-expand approach and showed a computational extractor for medium-to-
high entropy sources. More background and other approaches for constructing computational extractors can be found
in Yevgeniy’s slides and lecture note.
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