
Learning Models of Mathematical Objects Simons Institute, Spring 2017

Contents

1 Big picture 3

2 Setup 7

3 Boosting and the Hard-core lemma 9

4 Dense model theorem 10

5 Proof for boosting 11

6 Comments, Regularity lemmas 12
Wiki page: https://simons-institute.github.io/pseudorandomness/groups/modelstructure.

html

A theme that cuts across many domains of computer science and mathematics is to
find simple representations of complex mathematical objects such as graphs, functions, or
distributions on data. These representations need to capture how the object interacts with
a class of tests, and to approximately determine the outcome of these tests.

For example, in machine learning, the object might be a distribution on data points,
high dimensional real vectors, and the tests might be half-spaces. The goal would be to
learn a simple representation of the data that determines the probability of any half-space
or possibly intersections of half spaces. In computational complexity, the object might be
a Boolean function or distribution on strings, and the tests are functions of low circuit
complexity. In graph theory, the object is a large graph, and the tests are the cuts In the
graph; the representation should determine approximately the size of any cut. In additive
combinatorics, the object might be a function or distribution over an Abelian group, and
the tests might be correlations with linear functions or polynomials.

The focus of the working group is to understand the common elements that underlie
results in all of these areas, to use the connections between them to make existential results
algorithmic, and to then use algorithmic versions of these results for new purposes. For
example, can we use boosting, a technique from supervised learning, in an unsupervised
context? Can we characterize the pseudo-entropy of distributions, a concept arising in
cryptography? Do the properties of dense graphs “relativize” to sub-graphs of expanders?

In particular, we’ll start from boosting, a technique in machine learning to go from weak
learning to strong learning, i.e., taking an algorithm that learns a function only with a small
correlation and making one that learns the function on almost all inputs. We’ll show how
boosting implies a general Hardcore Distribution Lemma, showing that any function that
cannot be 1 − 𝛿 approximated by simple functions has a sub-distribution of size 𝛿 where
it has almost no correlation with simple functions. By starting from boosting, we will be
able to show a constructive version of this lemma. From the Hardcore Distribution lemma,
we’ll derive the Dense Model Theorem used by Green and Tao to show arbitrarily long
arithmetic progressions in the primes. Again, by starting with boosting, we get a general
algorithmic version of DMT. This algorithmic version can then be used to derive a general

1

https://simons-institute.github.io/pseudorandomness/groups/modelstructure.html
https://simons-institute.github.io/pseudorandomness/groups/modelstructure.html

Learning Models of Mathematical Objects Simons Institute, Spring 2017

Weak Regularity Theorem, with that of Frieze and Kannan and analogs for sparse graphs
as a special case.

Hopefully, at this point, the working group will segue from known connections to new
connections, e.g., is there a strong boosting that implies strong regularity? Can algorithmic
regularity lemmas be used in ML?

We won’t assume any background and will develop everything from first principles using
only simple calculations. Here’s an optional reading list, and some papers we might refer to.

Papers with results we’ll cover:

∙ Klivans and Servedio, Boosting and Hard-core Sets, FOCS 99.

∙ Omer Reingold, Luca Trevisan, Madhur Tulsiani, Salil P. Vadhan: Dense Subsets of
Pseudorandom Sets. FOCS 2008: 76-85

∙ Luca Trevisan, Madhur Tulsiani, Salil P. Vadhan: Regularity, Boosting, and Efficiently
Simulating Every High-Entropy Distribution. IEEE Conference on Computational
Complexity 2009: 126-136

∙ Russell Impagliazzo, Algorithmic Dense Model Theorems and Weak Regularity

∙ Sita Gakkhar Russell Impagliazzo Valentine Kabanets. Hardcore Measures, Dense
Models and Low Complexity Approximations

Bibliography:
We won’t go through these papers explicitly, but they provide the context.

∙ Robert E. Schapire: The Strength of Weak Learnability (Extended Abstract). FOCS
1989: 28-33 : 01 June 2005 A desicion-theoretic generalization of on-line learning and
an application to boosting Yoav Freund, Robert E. Schapire

∙ Yoav Freund, Robert E. Schapire: Game Theory, On-Line Prediction and Boosting.
COLT 1996: 325-332

∙ Russell Impagliazzo: Hard-Core Distributions for Somewhat Hard Problems. FOCS
1995: 538-545

∙ Thomas Holenstein: Key agreement from weak bit agreement. STOC 2005: 664-673

∙ Boaz Barak, Ronen Shaltiel, Avi Wigderson: Computational Analogues of Entropy.
RANDOM-APPROX 2003: 200-215

∙ Alan M. Frieze, Ravi Kannan: The Regularity Lemma and Approximation Schemes
for Dense Problems. FOCS 1996: 12-20

∙ Noga Alon, Amin Coja-Oghlan, Hiêp Hàn, Mihyun Kang, Vojtech Ŕ’odl, Mathias
Schacht: Quasi-Randomness and Algorithmic Regularity for Graphs with General De-
gree Distributions. SIAM J. Comput. 39(6): 2336-2362(2010)

2

Learning Models of Mathematical Objects Simons Institute, Spring 2017

∙ Noga Alon, Assaf Naor: Approximating the Cut-Norm via Grothendieck’s Inequality.
SIAM J. Comput. 35(4): 787-803 (2006)

∙ Green, Ben; Tao, Terence (2008). “The primes contain arbitrarily long arithmetic
progressions”. Annals of Mathematics. 167 (2): 481547.

∙ Tao, Terence; Ziegler, Tamar (2008). “The primes contain arbitrarily long polynomial
progressions”. Acta Mathematica. 201 (2): 213305

1 Big picture

We’ll talk about several results which have different names in different fields. You probably
know them, but don’t know the same or related idea comes up in the other fields.

Boosting Hard-core
lemma

Dense model
theorem

Weak regular-
ity

?

Area ML CC,
Derandom-
ization

Additive
combina-
torics, CC

Graph theory

Credit Shapiro,
Freund-
Schapire

Impagliazzo,
Holenstein

Green-Tao,
Barak-
Shaltiel-
Wigderson

Szemeredi,
Frieze-
Kannan

Get Circuit com-
puting 𝑓 1− 𝛿
of the time

” Proof that set
isn’t 𝛿-dense

”

Unless Weak learner
fails on distri-
bution of den-
sity Ω(𝛿)

Hard-core
distribution

Ω(𝛿)-dense
“model”
indistinguish-
able from
set

A model
succinctly
describing set

Algorithm
needed

Weak learner ” Distinguisher ”

We will take these theorems that we know to be true and show implications between
them. Implications are due to...

1. Boosting =⇒ Hard-core: Klivans and Servedio.

2. Hard-core =⇒ Dense model: Impagliazzo

3. Dense model =⇒Weak regularity: Trevisan-Tulsiani-Vadhan, Reingold-Trevisan-Tulsiani-
Vadhan

4. Weak regularity =⇒ boosting: Trevisan-Tulsiani-Vadhan

3

Learning Models of Mathematical Objects Simons Institute, Spring 2017

What can we gain from looking at these connections?

1. Versatility: We can “retrofit” algorithms for one setting to get algorithms for the other
settings.

For example, there are many boosting algorithms. When you follow this progression,
you get different quantitative and qualitative versions of dense model theorem and
regularity.

2. Algorithmic and constructive results:

There are nonconstructive versions using the min-max theorem for boosting, hard-core
lemma, dense model theorem. We care about algorithmic versions.

Note that the algorithmic result that we care about is different in the different settings.
In ML we care about getting a function that computes a function much of the time.
On the other side, we’re really after the distribution where the weak learner fails, so
that we get a model that succinctly describes the set.

We pay attention to do the reductions in an algorithmic, not just an existential way.

3. Using the dense model theorem for learning. Can we take a boosting technique and
use it in an unsupervised way?

4. Generality: some things seem to be specific to a setting (density of graphs).

But actually, weak regularity doesn’t have anything to do with graphs being dense. We
can relativize it to subgraphs of any graph. You can look at subgraphs of expanders,
bipartite graphs, etc., and plug it in the same machinery. Likewise if you want to look
at spectral norms rather than cuts.

Here is a cartoon:

1. Let 𝑋 be a set, e.g. a distribution of points in the square.

Let 𝑆 be some distribution on points in 𝑋.

Let 𝒯 be a set of classifiers, ex. a set of half-planes.

Let ℱ𝐾𝒯 be boolean functions on 𝐾 functions in 𝒯 ; here, partitions into polygonal
regions by 𝑘 half-planes.

We want to pre-process the distribution to be able to answer queries in ℱ𝐾𝒯 .

4

Learning Models of Mathematical Objects Simons Institute, Spring 2017

2. A violation of pseudo-density in this setting means there is a polygonal region with
many more points from 𝑆 than its volume, a “hot spot”.

Area (region) < 𝛿P𝑆 (region)− 𝜀.

3. A model is a partition into polygonal regions, with a probability distribution on regions.
A simple model is defined by at most 𝑘 lines.

The property of a model is that we can estimate half-space probabilities (“given any
half-space, what proportion of points of 𝑆 are on one side of it?”) by treating the
points as if uniform within regions.

4. The algorithmic requirement in order to process the points to answer queries in ℱ𝐾𝒯
is: given a set of points sampled from 𝑆, and a set of points sampled from 𝑈 , find a
half-space that approximately maximizes the difference in probabilities for these two
sets. The equivalent in boosting is a distinguishing algorithm.

5

Learning Models of Mathematical Objects Simons Institute, Spring 2017

Setting Boosting Hard-core measure DMT/transference
principle

Weak
regular-
ity

WL: |𝜇𝑖| ≥ 2𝛿, 𝜇𝑖 =
𝑔(ℎ1, . . . , ℎ𝑖, 𝑓),
ℎ𝑖+1 ∈ 𝒯 , 𝑘
iterations

Hardcore mea-
sure: 𝜇𝑘 =
𝑔(ℎ1, . . . , ℎ𝑘, 𝑓),
|𝜇𝑘| ≥ 2𝛿

Model: 𝜇𝑘 =
𝑔(ℎ1, . . . , ℎ𝑘, 𝑜),
|𝜇𝑘| ≥ 𝛿

SL: 𝐻 =
𝐺(ℎ1, . . . , ℎ𝑘),
P[𝐻 = 𝑓] ≥ 1− 𝛿

Violation of
hardness:
𝐻 = 𝐺(ℎ1, . . . , ℎ𝑘),
P[𝐻 = 𝑓] > 1− 𝛿

Violation of
pseudo-density
𝐻 = 𝐺(ℎ1, . . . , ℎ𝑘),
𝐻(𝑈) ≤ 𝛿𝐻(𝑆)− 𝜀

Assumption WL never fails Violation is impos-
sible

Violation of
pseudo-density
is impossible

Actually
dense

Conclusion SL works Hard-core measure
exists, with same 𝑘,
𝐺, 𝑔

Model exists Model
exists

Algorithmic Weak learner re-
quirement

Approximately op-
timal weak learner

Approximately op-
timal distinguisher

Setting Boosting Hard-core measure DMT/transference
principle

Weak
regular-
ity

WL: |𝜇𝑖| ≥ 2𝛿, 𝜇𝑖 =
𝑔(ℎ1, . . . , ℎ𝑖, 𝑓),
ℎ𝑖+1 ∈ 𝒯 , 𝑘
iterations

Hardcore mea-
sure: 𝜇𝑘 =
𝑔(ℎ1, . . . , ℎ𝑘, 𝑓),
|𝜇𝑘| ≥ 2𝛿

Model: 𝜇𝑘 =
𝑔(ℎ1, . . . , ℎ𝑘, 𝑜),
|𝜇𝑘| ≥ 𝛿

SL: 𝐻 =
𝐺(ℎ1, . . . , ℎ𝑘),
P[𝐻 = 𝑓] ≥ 1− 𝛿

Violation of
hardness:
𝐻 = 𝐺(ℎ1, . . . , ℎ𝑘),
P[𝐻 = 𝑓] > 1− 𝛿

Violation of
pseudo-density
𝐻 = 𝐺(ℎ1, . . . , ℎ𝑘),
𝐻(𝑈) ≤ 𝛿𝐻(𝑆)− 𝜀

Assumption WL never fails Violation is impos-
sible

Violation of
pseudo-density
is impossible

Actually
dense

Conclusion SL works Hard-core measure
exists, with same 𝑘,
𝐺, 𝑔

Model exists Model
exists

Algorithmic Weak learner re-
quirement

Approximately op-
timal weak learner

Approximately op-
timal distinguisher

Some comments:

1. Boosting: Note it’s important that the 𝛿 here is the same; many boosting algorithms
meet this criterion.

The theorem says that “either weak learner fails or strong learner works.”

In boosting, we think of weak learner as never failing.

6

Learning Models of Mathematical Objects Simons Institute, Spring 2017

2. Hard-core measure lemma: The lemma says that either we can find hard-core measure,
on which no function can compute the function 𝑓 more than 1

2
+ 𝛿 of time; or find a

function computing 𝑓 1− 𝛿 of the time.

Here, we want to come up with the measure. Although the logical format is the same as
boosting, here we assume that the violations never happen (there is no strong learner).

Every boosting algorithm gives hard-core measure lemma with the same parameters,
and with exactly the same way of “gluing” the functions.

Sometime you care about computational complexity of 𝐺 but not of 𝑔, or vice versa.

3. We can convert the hard-core measure theorem into the dense model theorem/trans-
ference principle (Tao and Ziegler).

Here, we have a distribution we’re trying to model. Either the distribution has pseudo-
density property— there isn’t a violation that’s definable from 𝑘 different properties
from hypothesis class, where violation means that the expected value is much smaller
on 𝑈 than on 𝑆—or we get a model of density ≥ 𝛿.

Assuming that violation of pseudo-density does not happen, we get a model.

4. Weak regularity is just DMT except the distribution actually is dense. It’s not so
interesting that it has a dense model.

What we get is that the dense model you get is simple, definable in terms of a small
number of basic hypotheses.

Sometimes we care about simplicity in the model, and sometimes simplicity in 𝐺.

5. Note the 𝑘 is the same throughout. Reductions preserves 𝑘, and the functions ℎ𝑖, 𝐺.

We don’t only have the fact that boosting implies hard-core lemma implies regularity
lemma. We have the stronger result that whatever boosting algorithm you give me, I
get a hard-core lemma and regularity lemma with the same parameters and algorithm.
Thus we can pick the boosting algorithm that gives the best results for our application.

2 Setup

First we discuss the PAC learning model.
Let 𝑈 be a set, and by abuse of notation, also a distribution on that set. (Think of 𝑈 as

the universe, the set of possible inputs.) For simplicity, take the distribution to be uniform.
Let 𝑓 : 𝑈 → {0, 1} be a boolean function. A learning algorithm can request any number of
points (𝑥, 𝑓(𝑥)) where 𝑥 ∼ 𝑈 . The goal is to find a hypothesis ℎ such that

P𝑥∼𝑈 [ℎ(𝑥) = 𝑓(𝑥)] ≥ 1− 𝛿.

Theorem 2.1. A strong learner for (𝑈, 𝑓) with hypothesis class ℋ is an algorithm such
that given samples (𝑥, 𝑓(𝑥)), 𝑥 ∼ 𝑈 , outputs ℎ ∈ ℋ (with high probability) such that

P𝑥∼𝑈 [ℎ(𝑥) = 𝑓(𝑥)] ≥ 1− 𝛿.

7

Learning Models of Mathematical Objects Simons Institute, Spring 2017

(Typically, we say that the probability of success is 1− 𝜀, ask for a strong learner for all
𝑓 ∈ ℱ , and require it to run in time poly(1

𝜀
, 1
𝛿
).)

In boosting, we assume that we have weak learners.

Theorem 2.2. A 𝜀-weak learner for (𝜇, 𝑓) with hypothesis class ℋ is an algorithm such
that given (𝑥, 𝑓(𝑥)), 𝑥 ∼ 𝜇, outputs ℎ (with high probability) such that

P𝑥∼𝜇[ℎ(𝑥) = 𝑓(𝑥)] ≥ 1

2
+ 𝜀.

It only has to output a function that is somewhat correlated with the right answer.
Typically, we ask the weak learner to work on any distribution 𝜇 satisfying some assumptions.

In order to use a weak learner, we construct a routine that subsamples the distribution
𝑈 to pass to pass to the weak learner.

Definition 2.3: Let 𝜇 : 𝑈 → [0, 1]. Define the probability distribution

𝐷𝜇(𝑥) =
𝜇(𝑥)∑

𝑥′∈𝑈 𝜇(𝑥′)
.

1

Think of this as rejection sampling: pick 𝑥 ∼ 𝑈 , keep it with probability in [0, 1], or else
throw if back and repeat.

In order for this sampling to be efficient, we need 𝜇 to not be too small.

Definition 2.4: Define the density of 𝜇 in 𝑈 to be

|𝜇| = E
𝑥∈𝑈

𝜇(𝑥).

We will use weak learners in the following context.

1. We will only run weak learners on distributions whose density is not too small (the
dependence on 𝛿 is |𝜇| = Ω(𝛿)). We don’t want to run a weak learner on a distribution of
very low density, because the time to simulate the distribution is inversely proportional
to the density.

2. We ask the weak learners to output a function in a given class ℎ ∈ 𝒯 .

Then it will turn out that that both the measures that we run the weak learners on,
and the final hypothesis, will be describable using ℱ𝑙𝒯 (see below), for some class ℱ .

Definition 2.5: Say that a set 𝒯 of functions 𝑈 → {0, 1} form a class if 𝑓 ∈ 𝒯 implies
1− 𝑓 ∈ 𝒯 .

Let ℱ be a class of boolean functions. Define the class of functions

ℱ𝑘𝒯 = {𝑓(ℎ1(𝑥), . . . , ℎ𝑘(𝑥)) : 𝑓 ∈ ℱ , ℎ1, . . . , ℎ𝑘 ∈ 𝒯 } .
1When 𝑈 is not uniform and has distribution 𝑢(𝑥), this is 𝜇(𝑥)𝑢(𝑥)∑

𝑥′∈𝑈
𝜇(𝑥′)𝑢(𝑥′)

.

8

Learning Models of Mathematical Objects Simons Institute, Spring 2017

3 Boosting and the Hard-core lemma

The first boosting algorithm we give is totally ridiculous from the ML point of view. For
people who work on weak regularity on graphs this is the natural version, and leads to the
standard versions of results.

We will take ℱ to be the set of all boolean functions, so given hypotheses ℎ1, . . . , ℎ𝑘, we
can choose the best predictor using ℎ1(𝑥), . . . , ℎ𝑘(𝑥).

Theorem 3.1 (Boosting with decision trees). Let 𝑈 be a distribution, 𝒯 a class of boolean
functions 𝑈 → {0, 1}, ℱ the class of all boolean functions. Let 𝑓 : 𝑈 → {0, 1} be a given
function (which we are trying to learn).

1. Suppose that there is a 𝛿-weak learner such that given any distribution 𝜇 on 𝑈 with
|𝜇| ≥ 2𝛿, it produces ℎ ∈ 𝒯 such that

P𝑥∼𝜇[ℎ(𝑥) = 𝑓(𝑥)] ≥ 1

2
+ 𝜀.

2. Then there is a strong learner that produces ℎ ∈ ℱ𝑘𝒯 with 𝑘 ≤
†

1
𝜀2𝛿2

£
such that

P𝑥∼𝑈 [ℎ(𝑥) = 𝑓(𝑥)] ≥ 1− 𝛿.

2

Theorem 3.2 (Hard-core lemma). Let 𝑈 be a distribution, 𝒯 a class of boolean functions
𝑈 → {0, 1}, ℱ the class of all boolean functions.

Then either

1. There exists ℎ ∈ ℱ𝑘𝒯 such that

P𝑥∼𝑈 [ℎ(𝑥) = 𝑓(𝑥)] ≥ 1− 𝛿,

where 𝑘 ≤ 1
𝜀2𝛿2

, or

2. (There exists a hard-core distribution.) There exists |𝜇| ≥ 2𝛿 on 𝑈 , such that for all
ℎ ∈ 𝒯 ,

P𝑥∼𝜇[ℎ(𝑥) = 𝑓(𝑥)] ≤ 1

2
+ 𝜀.

Note it is important for us to keep track of the size of the hardcore distribution, which is
≥ 2𝛿 here. Different boosting algorithms will give the result for different classes of functions
ℱ .

Proof of hard-core lemma 3.2 from boosting 3.1. Let weak learner be exhaustive search over
𝒯 . The weak learner operates on distributions |𝜇𝑖| ≥ 2𝛿. If it always produces ℎ𝑖 with
bias ≥ 𝛿, then continue and obtain the strong learner: we get some 𝐻 ∈ ℱ𝑘𝒯 such that
𝐻(𝑥) = 𝑓(𝑥) with probability 1− 𝛿.

If at some step 𝑖 our exhaustive search algorithm gets stuck, we get a distribution 𝜇𝑖

that’s hard-core.
2 We ignore sample complexity here. In reality, because we only see 𝑈 from samples, we need to think

about generalization. If the VC-dimension of 𝒯 is 𝑑, then the VC-dimension of ℱ𝑘ℋ is at most 𝑘𝑑. In ML
we don’t want to take ℱ to be the class of all boolean functions. For this theorem, let’s just assume we are
actually given all pairs (𝑥, 𝑓(𝑥)).

9

Learning Models of Mathematical Objects Simons Institute, Spring 2017

4 Dense model theorem

Definition 4.1: For a set 𝑆 ⊆ 𝑈 and a function 𝑇 : 𝑈 → {0, 1}, let 𝑇 (𝑆) := E𝑥∈𝑆𝑇 (𝑥).
(For a measure 𝜇 : 𝑈 → [0, 1], also write 𝑇 (𝜇) = E𝑥∼𝜇𝑇 (𝑥).)

Let 𝑆 ⊆ 𝑈 be a subset, and let 𝒯 be a set of tests. 𝑆 is (𝜀, 𝛿)-pseudo-dense against
𝒯 if for all 𝑇 ∈ 𝒯 ,

𝑇 (𝑈) ≥ 𝛿𝑇 (𝑆)− 𝜀.

Think of saying that the tests 𝒯 don’t reveal that the set 𝑆 is small.

1. One way of being pseudo-dense is to actually be dense.

2. Another, one step removed, is that there’s a set 𝑅 (or more generally, a measure 𝜇)
that’s indistibguishable from 𝑆 by 𝒯 , and such that 𝑅 occupies at least a 𝛿 fraction of
𝑈 .

Definition 4.2: For two distributions 𝜇1, 𝜇2 on 𝑈 , we say that 𝜇1, 𝜇2 are indistinguishable
by tests in 𝒯 up to 𝜀, written 𝜇1 ∼𝒯 𝜇2 within 𝜀, if for every 𝑇 ∈ 𝒯 ,

|E𝜇1𝑇 − E𝜇2𝑇 | ≤ 𝜀.

Theorem 4.3 (Dense model theorem). Let 𝒯 be a class of tests 𝑈 → {0, 1}.
If 𝑆 is (𝜀, 𝛿)-pseudodense against 𝐹𝑘𝒯 , 𝑘 = 𝑂

Ä
1

𝜀2𝛿2

ä
then there exists 𝜇, 𝜇 ∈ 𝐹𝑘𝒯 such

that |𝜇| ≥ 𝛿
1+𝛿
−𝑂(𝜀) and 𝐷𝜇 ∼𝒯 𝑆 to within 𝑂(𝜀/𝛿).

The idea in the proof is to use the Hard-core lemma, with the hard function being
membership in 𝑆.

Proof. Let 𝑈 ′ be the following distribution: let 𝛿′ = 𝛿
1+𝛿

and

1. with probability 𝛿′, take 𝑥 ∈ 𝑆 and output (0, 𝑥)

2. with probability 1− 𝛿′, take 𝑥 ∈ 𝑈 and output (1, 𝑥).

Define a test 𝑇 ∈ 𝒯 to operate on an example (𝑦, 𝑥) by 𝑇 (𝑦, 𝑥) = 𝑇 (𝑥). For 𝑇 ∈ ℱ𝑘𝒯 ,

P𝑈 ′ [𝑇 ((𝑦, 𝑥)) = 𝑦] = 𝛿′𝑇 (𝑆) + (1− 𝛿′)(1− 𝑇 (𝑈)) = 1− 𝛿′ + 𝛿′(𝑇 (𝑆))− (1− 𝛿′)𝑇 (𝑈) (1)

= 1− 𝛿′ +
1

1 + 𝛿
(𝛿𝑇 (𝑆)− 𝑇 (𝑈)) ≤ 1− 𝛿′ + 𝜀.

(2)

No test in ℱ𝑘𝒯 can be correct with probability > 𝛿′−𝜀. By the Hard-core Lemma 3.2, there
exists |𝜇′| ≥ 2(𝛿′ − 𝜀) such that for any 𝑇 ∈ 𝒯 , P(𝑥,𝑦)∼𝑈 ′ [𝑇 (𝑥) = 𝑦] ≤ 1

2
+ 𝜀.

In order for 𝜇′ to be hardcore, it must be split approximately evenly between 𝑈 and 𝑆
(up to 𝜀); otherwise; we could have an advantage by predicting constant 0 or 1. Thus each
part has at least 2(𝛿′ − 𝜀)

Ä
1
2
− 𝜀
ä

= 𝛿′
Ä
1−𝑂

Ä
𝜀
𝛿

ää
of the mass. Then

𝐷𝜇′|𝑈 ∼𝑂(𝜀) 𝐷𝜇′|𝑆 ∼𝑂(𝜀
𝛿)

𝑆.

10

Learning Models of Mathematical Objects Simons Institute, Spring 2017

5 Proof for boosting

Proof of Theorem 3.1. The algorithm is as follows. Let 𝑊𝐿(𝜇) denote the weak learner
operating on (𝜇, 𝑓).

Let 𝜇0 be constant 1, 𝑖 = 0.
While |𝜇𝑖| ≥ 2𝛿, do

∙ ℎ𝑖+1 ←[𝑊𝐿(𝜇𝑖).

∙ Partition 𝑈 according to values of ℎ1, . . . , ℎ𝑖.

Let ℎ1:𝑖(𝑥) := (ℎ1(𝑥), . . . , ℎ𝑖(𝑥)) ∈ {0, 1}𝑖, and let 𝐵𝑖(𝑥) be the “block” that 𝑥 is in,

𝐵𝑖(𝑥) = ℎ−1
1:𝑖 (ℎ1:𝑖(𝑥)) = {𝑦 ∈ 𝑈 : ℎ1:𝑖(𝑥) = ℎ1:𝑖(𝑦)} .

For a set 𝐵, let Maj(𝐵) denote the majority value of 𝑓 on 𝐵.

∙ Define 𝜇𝑖+1 by

𝜇𝑖+1(𝑥) =


1−𝑝Maj,𝐵𝑖(𝑥)

𝑝Maj,𝐵𝑖(𝑥)
, if 𝑓(𝑥) = Maj(𝐵𝑖(𝑥))

1, otherwise

where 𝑝Maj,𝐵 = P(𝑓(𝑦) = Maj(𝐵)|𝑦 ∈ 𝐵), the proportion of the majority in 𝐵.

∙ 𝑖←[𝑖 + 1.

Finally, return 𝐻𝑖(𝑥) = Maj(𝐵𝑖(𝑥)), i.e., look at the block that 𝑥 is in, and choose the
majority value.

Note that the measure 𝜇𝑖+1 rebalances each block 𝐵𝑖 such that conditioned on 𝑦 being
in a block 𝐵𝑖(𝑥),

P𝑦∼𝜇𝑖+1
(𝑓(𝑦) = 1|𝑦 ∈ 𝐵𝑖(𝑥)) = P𝑦∼𝜇𝑖+1

(𝑓(𝑦) = 0|𝑦 ∈ 𝐵𝑖(𝑥)) =
1

2
.

Indeed, we have

E
𝑦∼𝑈

[1𝑓(𝑦)=1𝜇𝑖+1(𝑦)|𝑦 ∈ 𝐵𝑖(𝑥)] = 𝑝Maj,𝐵𝑖(𝑥)

1− 𝑝Maj,𝐵𝑖(𝑥)

𝑝Maj,𝐵𝑖(𝑥)

= 1− 𝑝Maj,𝐵𝑖(𝑥) (3)

E
𝑦∼𝑈

[1𝑓(𝑦)=0𝜇𝑖+1(𝑦)|𝑦 ∈ 𝐵𝑖(𝑥)] =
Ä
1− 𝑝Maj,𝐵𝑖(𝑥)

ä
· 1 = 1− 𝑝Maj,𝐵𝑖(𝑥) (4)

|𝜇𝑖+1| = E
𝑦∼𝑈

[𝜇𝑖+1(𝑦)] =
∑

block 𝐵𝑖

[2(1− 𝑝Maj,𝐵𝑖
)P(𝐵𝑖)] (5)

≥ 2(1− 𝑝Maj,𝑈). (6)

Note that if |𝜇𝑖+1| ≤ 2𝛿, then P𝑥∈𝑋 [𝐻𝑖 = 𝑓] ≥ 1 − 𝛿, and we are done. (We stop before
we have to apply the weak learner to a distribution of density < 𝛿.)

We need to show this method terminates in a bounded number of steps.
Consider the potential function

𝜙𝑖 = E𝑥∼𝑈 [(P[𝑓 = 1|𝐵𝑖(𝑥)])2] = E𝑥∼𝑈 [E[𝑓 |𝐵𝑖]
2]

11

Learning Models of Mathematical Objects Simons Institute, Spring 2017

(Think of 𝐵𝑖 as a partition; for a partition, E[𝑓 |𝑃] is a function of 𝑥 that takes 𝑥 to the
average value in the atom of the partition that contains 𝑥.) Note this have value in [0, 1]
and is maximized if 𝑓 is constant on every block. We show every iteration increases this
potential function by at least a fixed amount, (𝜀𝛿)2.

Fix a block 𝐵 in the partition. Define 𝑝, 𝑞, 𝛼+, 𝛼−, 𝑝0, 𝑝1 as follows.

𝑝 = P[𝑓 = 1|𝐵] (7)

𝑞 = P[ℎ𝑖+1 = 1|𝐵] (8)

𝑞 + 𝛼+ = P[ℎ𝑖+1 = 1|𝐵, 𝑓 = 1] (9)

𝑞 − 𝛼− = P[ℎ𝑖+1 = 1|𝐵, 𝑓 = 0] (10)

𝛼+𝑝 = 𝛼−(1− 𝑝) by conservation (11)

𝑝0 = P[𝑓 = 1|ℎ = 0, 𝐵] =
P[𝑓 = 1 ∧ ℎ = 0|𝐵]

P[ℎ = 0|𝐵]
=

𝑝(1− 𝑞 − 𝛼+)

1− 𝑞
(12)

𝑝1 = P[𝑓 = 1|ℎ = 1, 𝐵] =
P[𝑓 = 1 ∧ ℎ = 1|𝐵]

P[ℎ = 1|𝐵]
=

𝑝(𝑞 + 𝛼+)

𝑞
(13)

E𝑥∈𝐵[E[𝑓 |𝐵𝑖+1]
2] = 𝑞𝑝21 + (1− 𝑞)𝑝20 = 𝑝2

Ç
(𝑞 + 𝛼+)2

𝑞
+

(1− 𝑞 − 𝛼+)2

1− 𝑞

å
(14)

= 𝑝2
ÇÇ

𝑞 + 2𝛼+ +
𝛼2
+

𝑞

å
+

Ç
1− 𝑞 − 2𝛼+ +

𝛼2
+

1− 𝑞

åå
(15)

= 𝑝2
Ç

1 +
𝛼2
+

𝑞
+

𝛼2
+

1− 𝑞

å
(16)

≥ 𝑝2 + 4𝑝2𝛼2
+ ≥ 𝑝2 + 𝛼2

+ (17)

E[𝑓 |𝐵𝑖+1]
2 − E[𝑓 |𝐵𝑖]

2 = 𝛼2
+(𝐵𝑖(𝑥)). (18)

Assume WLOG that Maj(𝐵𝑖(𝑥)) = 1. (Otherwise the LHS is smaller.)

E
𝑥∈𝐵

[𝜇(𝑥)((−1)(ℎ(𝑥)̸=𝑓(𝑥)))] = 𝑝

Ç
1− 𝑝

𝑝

å
[(𝑞 + 𝛼+)− (1− 𝑞 − 𝛼+)] (𝑓 = 1) (19)

+ (1− 𝑝)1[1− (1− 𝛼−)− (𝑞 − 𝛼−)] (𝑓 = 0) (20)

= (1− 𝑝)(2𝛼+ + 2𝛼−) (21)

= 2𝛼+(1− 𝑝) + 2𝛼+𝑝 = 2𝛼+ (22)

E
𝑥∼𝑈

2𝛼+(𝐵𝑖(𝑥)) = E
𝑥∼𝑈

[𝜇(𝑥)((−1)ℎ(𝑥)̸=𝑓(𝑥))] (23)

≥ 𝜀|𝜇| ≥ 2𝛿𝜀 (24)

𝜙𝑖+1 − 𝜙𝑖 ≥ E
𝑥∼𝑈

[E[𝑓 |𝐵𝑖+1]
2 − E[𝑓 |𝐵𝑖]

2] (25)

≥ E
𝑥∼𝑈

𝛼2
+(𝐵𝑖(𝑥)) ≥ (𝛿𝜀)2. (26)

Because 𝜙𝑖 is always in [0, 1], the number of iterations is at most 𝑘 ≤ (𝛿𝜀)2.

6 Comments, Regularity lemmas

Some comments:

12

Learning Models of Mathematical Objects Simons Institute, Spring 2017

1. All you get from this proof is a decision tree; the complexity is exponential in 𝑘. This
is a bug, not a feature.

In complexity terms, we don’t get good hard-core measure, because the circuit size for
the outer function 𝐺 is 2𝑘. A better boosting algorithm would give 𝐺 have smaller
complexity. If your stopping point is the hard-core lemma, this is not the boosting
algorithm you want. For the dense model theorem, this is fine because all you care
about is size of 𝑘, not the complexity of 𝐺.

There is another boosting algorithm which gives a weighted majority function, which
is a simpler function. A weighted majority can be converted into a decision tree, but
not vice versa.

2. This potential function matches this boosting algorithm. Other boosting algorithms
can be analyzed with other potential functions.

This is like the potential function used most in graph theory. Key property: you can’t
make negative progress; you always go forwards.

3. For Szemeredi regularity, we need a stronger boosting theorem. Suppose we get stuck
at some step: no function correlates globally, but there are many blocks where we can
find functions that correlate with the function inside that block. If in 𝜀 fraction of
blocks we find functions that correlate, partition them based on all the values of these
functions, and repeat.

In one step we’ve gone from order of 2𝑘 to order of 22𝑘 buckets, and increased the
potential function by a polynomial in terms of 𝜀, 𝛿. This is a familiar argument; we
can only go 1

𝜀
iterations before we terminate. This time, the number of sets is a tower

depending on 𝜀.

4. Regularity lemmas:

Fix a set of vertices 𝑉 of set 𝑛. Let 𝑈 be edges in complete graph on 𝑉 . (We can also
consider the case when 𝑈 is not the complete graph, ex. 𝑈 is the edges in 𝑑-regular
expander on 𝑉 .)

The underlying set we care about is the set of cuts defined by 𝐴,𝐵 ⊆ 𝑉 where 𝐴∩𝐵 =
𝜑; there are 3𝑘 of them.

If |𝐸| ≥ 𝛿
Ä
𝑛
2

ä
, the generic regularity lemma says there exists 𝜇 = 𝐺(𝑇1, . . . , 𝑇𝑘), where

𝑘 = 𝑂
Ä

1
𝜀2𝛿2

ä
, that is a good predictor the number of edges of any cut in the graph.

Use the 𝑇 ’s to divide the vertices into 3𝑘 subsets such that 𝜇 is a constant on every
pair of subsets.

𝐸𝐺(𝐴,𝐵)

|𝐸𝐺|
≈𝜀

∑
𝑖,𝑗

𝜇𝑖𝑗
|𝐴 ∩ 𝐴𝑖||𝐵 ∩𝐵𝑗|

|𝑉 |2
.

This is the weak regularity of Frieze-Kannan. For Szemeredi we need the stronger
boosting lemma (see previous point).

We can also do something similar with 𝐺 a subset of an expander. The expander
mixing lemma gives an error term.

13

	Big picture
	Setup
	Boosting and the Hard-core lemma
	Dense model theorem
	Proof for boosting
	Comments, Regularity lemmas

